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Abstract

Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various
disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory
pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway,
however our understanding remains incomplete. Genetically modified mice, using optogenetics and
pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways
that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway)
leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute
to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury,
rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and
disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the
immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic
inflammation that undergird disease processes.
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Background
A burgeoning field of bioelectronics now offers tools
and novel non-pharmacological approaches to activate
neuroimmunomodulatory mechanisms for organ pro-
tection in diseases and disorders, including hyperten-
sion (renal denervation), heart failure, obesity,
epilepsy, inflammation, diabetes, bronchoconstriction
(forming the basis of anticholinergic treatment of
chronic obstructive pulmonary disease), migraines and
others. Recently, we reported a simple ultrasound (US)-
based protocol that reduced tissue and systemic inflam-
mation and prevented ischemia-reperfusion injury (IRI) in
mice (Gigliotti et al. 2013). This effect was dependent on
the spleen and functional α7 nicotinic acetylcholine recep-
tors (α7nAChRs), consistent with the hypothesis that US
activated the splenic cholinergic anti-inflammatory path-
way (CAP) (Tracey 2007). This inflammatory reflex, a

neuro-immune circuit, is critical for immunological
homeostasis (for recent reviews see (Okusa et al. 2017;
Pavlov et al. 2018)). The CAP is initiated via activation of
the catecholaminergic splenic nerve and release of nor-
epinephrine (NE) and culminates with α7nAChR activa-
tion and inhibition of inflammation. Vagus nerve
stimulation (VNS) also protects the kidney from injury
(Abe et al. 2017; Inoue et al. 2016).
Our understanding, but still incomplete knowledge, of

modulation of disease and tissue injury through the anti-
inflammatory reflex pathway has become increasingly
complex with research involving different animal models
of inflammation. These models are invaluable as they
begin to contribute to a unifying mechanism by which
VNS (and other methods of stimulating the pathway)
leads to an anti-inflammatory and tissue protective ef-
fect. In this review we describe disease models that con-
tribute to our understanding of how VNS attenuates
inflammation and organ injury: acute kidney injury,
rheumatoid arthritis, and inflammatory gastrointestinal
(GI) disease. We expand on the role of sympathetic
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efferent pathways in the inflammatory reflex that modu-
lates these diseases. Lastly, we look at the synergy in
these diseases by highlighting common neuronal path-
ways in the anti-inflammatory reflex (including new
findings that challenge and expand the canonical view of
the CAP) and by examining the interplay between
chronic kidney disease (CKD), gut dysbiosis, and the
CAP, which can lead to CKD progression.

Inflammatory reflex and the cholinergic anti-inflammatory
pathway (CAP)
The first clue for the existence of the inflammatory reflex
was a seminal study by Linda Watkins (Watkins et al. 1995).
She demonstrated that interleukin (IL)-1β-induced hyper-
thermia was blocked by subdiaphragmatic vagus transection,
which indicated that the vagus nerve can sense inflamma-
tion at the periphery and send a signal to the central
nervous system (CNS). Subsequently, Tracey found that a
small amount of CNI-1493 (a potent anti-inflammatory
agent) administered intracerebroventricularly significantly
decreased lipopolysaccharide (LPS)-induced increases in
levels of plasma tumor necrosis factor (TNF), which mainly
originates from the spleen (Bernik et al. 2002). He further
demonstrated that cutting the vagus nerve abolished the
decrease in plasma TNF level by CNI-1493 administration
and that electrical stimulation of the vagus nerve signifi-
cantly decreased plasma TNF, suggesting that an anti-
inflammatory signal can descend from the CNS through
the vagus nerve to the spleen to alleviate peripheral
inflammation. These findings formed the basis of the
inflammatory reflex, where the afferent vagus nerve senses
inflammation in the periphery, and the signal is transmit-
ted to the efferent vagus nerve and the spleen to abrogate
peripheral inflammation (Fig. 1) (Tracey 2007).
The inflammatory reflex is triggered when the afferent

vagus nerve senses inflammatory products, such as cyto-
kines, damage-associated molecular patterns, and pathogen-
associated molecular patterns, through cytokine receptors
and pattern-recognition receptors (Hosoi et al. 2005). The
nerve activity is relayed through the CNS to the efferent
vagus nerve and then to the splenic nerve (Rosas-Ballina et
al. 2008). A direct connection between the efferent vagus
nerve and the splenic nerve is still controversial (Martelli et
al. 2014), although the celiac/superior mesenteric/
suprarenal ganglia may connect these two nerves
(Bellinger et al. 1989; Berthoud and Powley 1993;
Berthoud and Powley 1996; Li et al. 2010; Nance and
Burns 1989). Activated splenic nerves release NE
from their terminals, which interacts with β2-adrener-
gic receptors expressed on the choline acetyltransfer-
ase (ChAT)-positive T cells in the spleen, causing
acetylcholine (ACh) release from this specific T cell
subpopulation (Rosas-Ballina et al. 2011). ACh binds to
α7nAChRs expressed on macrophages residing in close

proximity to ChAT-positive T cells, resulting in suppres-
sion of proinflammatory cytokine production (e.g., TNFα)
by macrophages and alleviated inflammation (Rosas-
Ballina et al. 2008; Wang et al. 2003). Intracellular mecha-
nisms downstream of α7nAChRs include suppression of
the NF-κB pathway (Guarini et al. 2003; Altavilla et al.
2006; Sun et al. 2013; Yoshikawa et al. 2006), activation of
the Janus kinase 2/signal transducer and activator of tran-
scription 3 (JAK2/STAT3) pathway (de Jonge et al.
2005; Lu et al. 2017), and inhibition of the NLR
family, pyrin domain-containing 3 (NLRP3) inflamma-
some by preventing mitochondrial DNA release (Lu
et al. 2014). The efferent arm of the inflammatory re-
flex was termed the cholinergic anti-inflammatory
pathway (CAP) (Tracey 2007).
Although many studies have described the protective

effects of efferent VNS via activation of the CAP, others
have challenged and expanded the original view of the
CAP both in terms of the efferent pathway and by begin-
ning to define different pathways by which afferent VNS
can attenuate inflammation (Martelli et al. 2014; Inoue
et al. 2019). Moreover, the interaction between these
neural circuits and the immune system seems to be very
complex. Carnevale et al. demonstrated that T cells
egress from the spleen and infiltrate the kidney and
aorta to cause angiotensin II-induced hypertension and
that the vagus nerve and splenic nerve are involved in
these steps based on the experiments with vagotomy, ce-
liac ganglionectomy, or selective splenic denervation
(Carnevale et al. 2016; Carnevale et al. 2014). Increased
splenic sympathetic nerve activity is also important in
myeloid progenitor proliferation and differentiation in
the spleen and the subsequent formation of atheroscler-
otic plaque in diabetes (Vasamsetti et al. 2018). Thus,
the effect of the inflammatory reflex on the spleen and
immune cells is complex and highly context-dependent.

Acute kidney injury, neuromodulation of injury, and the
CAP
Acute kidney injury (AKI) is a serious world-wide clin-
ical concern since the incidence rate is high and AKI is
associated with high mortality and morbidity. Moreover,
AKI episodes can lead to CKD and end stage renal
disease (Coca et al. 2012; Lassnigg et al. 2004; Tanaka
et al. 2014). It is a general consensus that inflamma-
tion by immune cells such as neutrophils and mono-
nuclear phagocytic cells plays a critical role in the
pathophysiology of AKI (for reviews see (Li and
Okusa 2010; Kinsey and Okusa 2012; Bonventre and
Yang 2011; Rabb et al. 2016; Jang and Rabb 2015)),
however pharmacological approaches that alleviate in-
flammation in AKI have been unsuccessful in clinical
trials and no approved pharmacological agents are available
to treat human AKI. Thus neuroimmunomodulation by

Tanaka et al. Bioelectronic Medicine            (2019) 5:13 Page 2 of 11



non-pharmacological approaches is attracting consider-
able attention as an innovative alternative therapeutic
strategy for AKI (Gigliotti et al. 2013; Abe et al. 2017;
Inoue et al. 2016; Inoue et al. 2019; Tanaka et al. 2017;
Gigliotti et al. 2015).
The kidney is densely innervated by sympathetic

nerves, which reach all portions of the renal vessels and
some tubules (Barajas et al. 1992). The sympathetic ner-
vous system is well known to control factors important
for blood pressure regulation such as heart rate and vas-
cular tone, central nervous system regulation of cardio-
vascular function, sodium handling, and renin secretion
(Dampney 2016; DiBona and Kopp 1997; Guyenet 2006;
Joyner et al. 2010; Coffman 2014) An increase in efferent
renal sympathetic nerve activity decreases renal blood
flow (via α1A-adrenergic receptors on renal arterial vessels),
decreases urinary sodium excretion (via α1B-adrenergic re-
ceptors on tubular epithelial cells), and increases renin se-
cretion (via β1-adrenergic receptors on juxtaglomerular

granular cells). Increased sympathetic activity to the kidney
in hypertension forms the basis for the experimental and
clinical use of renal denervation for blood-pressure lower-
ing, but the contribution from renal sensory afferents in the
renorenal reflex is not well understood (DiBona and
Esler 2010). On the other hand, the innervation by
sensory nerves in the kidney is limited predominantly
to the pelvic region (Marfurt and Echtenkamp 1991).
Based on these important functions mediated by renal
sympathetic and sensory nerves, renal denervation for the
treatment of resistant human hypertension is undergoing
investigation and its efficacy remains controversial (Bhatt
et al. 2014; Esler et al. 2012; Symplicity 2011).
Renal denervation has been tested in various kidney

disease models including AKI. Renal denervation was
protective in a rat model of anti-Thy-1.1 nephritis
(Veelken et al. 2008) and a mouse model of lupus neph-
ritis (Mathis et al. 2013). Renal denervation performed
at 5 min (Fujii et al. 2003) or 2 h (Ogawa et al. 2002)

Fig. 1 The inflammatory reflex. The inflammatory reflex is triggered when the afferent vagus nerve senses inflammatory products through the
receptors. The nerve activity is relayed through the central nervous system (CNS) to the efferent vagus nerve. The original pathway involves the
splenic nerve although a direct connection between the efferent vagus nerve and the splenic nerve is still controversial. Activated splenic nerves
release norepinephrine from their terminals, which interacts with β2-adrenergic receptors expressed on the choline acetyltransferase (ChAT)-
positive T cells in the spleen, causing acetylcholine (ACh) release from this specific T cell subpopulation. ACh binds to α7 nicotinic acetylcholine
receptors (α7nAChRs) expressed on macrophages residing in close proximity to ChAT-positive T cells, resulting in suppression of proinflammatory
cytokine production (e.g., TNFα) by macrophages and alleviated inflammation in many pathological settings (e.g., endotoxemia, acute kidney
injury). Recent studies also suggested that a direct interaction between cholinergic enteric neurons and gut resident macrophages via ACh had
an anti-inflammatory effect. DMV, dorsal motor nucleus of the vagus; NTS, nucleus tractus solitarius
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before IRI also ameliorated AKI in rats. In these studies
both renal sympathetic and sensory nerves were ablated,
whereas Kim et al. investigated the roles of these nerves
separately in a mouse model of unilateral ureteral ob-
struction (Kim and Padanilam 2013) and unilateral renal
IRI (Kim and Padanilam 2015). Renal denervation sig-
nificantly reduced the infiltration of neutrophils and
macrophages into injured kidneys and renal fibrosis in
these models. Notably, continuous infusion of norepin-
ephrine or calcitonin gene-related peptide (CGRP) into
the cortical region of the denervated kidney abrogated
the protective effect of renal denervation in a dose-
dependent manner, whereas infusion of neuropeptide Y
or substance P did not have any effect. Furthermore α2-
adrenergic and CGRP receptors, which are expressed in
tubular epithelial cells, were necessary for the induction
of renal inflammation and fibrosis. These findings indi-
cate that both adrenergic signaling (sympathetic nerves)
and CGRP signaling (sensory nerves) in the kidney play
important roles in kidney inflammation and subsequent
fibrosis.
Activation of the CAP is protective against AKI. Elec-

trical stimulation of the left cervical vagus nerve 24 h be-
fore renal IRI significantly attenuated AKI in mice
(Inoue et al. 2016). The protective effect was nullified in
α7nAChR−/− mice or splenectomized mice, which sug-
gests that the protection by VNS is mediated by CAP ac-
tivation (Fig. 1). Interestingly, the stimulation of either
the peripheral or central end of the cut vagus nerve was
sufficient to protect the kidneys. The stimulation of the
central end (afferent VNS) was still protective when
nerve conduction of the right vagus nerve was blocked
by bupivacaine. These findings indicate that mechanisms
other than vagovagal reflex exist in the protective effect
of afferent VNS in AKI. VNS was also shown to be
beneficial in renal transplantation (Hoeger et al. 2010;
Hoeger et al. 2014). VNS in brain-dead donor rats atten-
uated inflammation in the donors and decreased im-
mune cell infiltration to the recipient kidneys, improving
long-term renal function and survival of the recipients.
Pulsed US may be a promising non-invasive approach

to activate the CAP and protect the kidneys (Gigliotti et
al. 2013; Gigliotti et al. 2015). US insonation with a clin-
ical machine 24 h before IRI ameliorated AKI in mice. In
splenectomized mice, mice with splenic sympathectomy,
α7nAChR−/− mice, mice treated with an antagonist of
α7nAChR, and Rag1−/− mice, US was not effective.
Moreover, bone marrow chimera studies demonstrated
that α7nAChRs expressed in hematopoietic cells are es-
sential for the protection by US. Wasilczuk et al.
(Wasilczuk et al. 2018) recently showed that focused
ultrasound application to the left cervical vagus nerve in
rats significantly reduced plasma TNFα levels after LPS
administration, whereas US insonation targeted to the

spleen also conferred an anti-inflammatory effect (Cotero
et al. 2019) (Zachs et al. 2019), indicating that the vagus/
splenic nerve and splenocytes can be the direct target of
US. Regarding the mechanism by which US can affect the
nerve, several possibilities have been proposed including a
mechanical or thermal effect on mechanically-activated
ion channels or voltage-gated ion channels expressed in
the neurons and a cavitational effect leading to ionic flux
(Downs et al. 2018; Kim et al. 2012; Tyler et al. 2008)
(Wright et al. 2017). One intriguing possibility is that
PIEZO1 and PIEZO2, mechanosensitive ion channels,
could be involved, since these channels are expressed in
the afferent vagus nerve (Zeng et al. 2018; Nonomura et
al. 2017).
Abe et al. (Abe et al. 2017) explored the roles of re-

straint stress and C1 neurons in the context of CAP ac-
tivation and AKI. C1 neurons located in the medulla
oblongata innervate the dorsal motor nucleus of the
vagus (DMV), sympathetic efferent pathways, the para-
ventricular nucleus of the hypothalamus, and other areas
of the brain, and play a pivotal role in mediating auto-
nomic responses to various stressors such as hypoxia
and hypotension (Guyenet et al. 2013). Optogenetic
stimulation of C1 neurons was protective against renal
IRI in mice, and the effect was dependent on the spleen,
α7nAChRs, and β2-adrenergic receptors. They also in-
vestigated the downstream pathway of C1 stimulation by
performing ganglionic blockade, subdiaphragmatic va-
gotomy, and corticosterone receptor blockade. Only gan-
glionic blockade significantly attenuated the protective
effect of C1 stimulation. Interestingly, physical restraint
for 10 min was also protective against renal IRI, and the
protection was blocked when C1 neurons were select-
ively ablated or inhibited. Taken together, these findings
suggest that restraint stress can activate C1 neurons and
the CAP, not through vagal efferents or the hypothalamic-
pituitary-adrenal axis but through sympathetic efferents,
leading to kidney protection. The terminal fields of these
sympathetic efferents that protect the kidney have not yet
been identified, nor has the specific mechanism of
protection.
Another non-canonical CAP involves α7nAChR-posi-

tive peritoneal macrophages (Inoue et al. 2019). VNS or
pulsed US changed the phenotype of α7nAChR-positive
peritoneal macrophages, and adoptive transfer of these
peritoneal macrophages protected recipient mice against
renal IRI. The protective effect was not observed in
α7nAChR−/− mice, splenectomized mice, or Rag1−/−

mice lacking T and B cells. These results may suggest an
interaction between α7nAChR-positive peritoneal mac-
rophages and other immune cells including β2-adrener-
gic receptor-positive CD4+ T cells in the spleen. Pulsed
US can target peritoneal macrophages directly or the
vagus nerve existing in the peritoneum, considering that
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unfocused pulsed US was applied from the back using a
big transducer in this study and that the distance be-
tween the vagus nerve and peritoneal cavity is small
(Matteoli and Boeckxstaens 2013; Tanaka et al. 2002).
The downstream signaling of α7nAChR in peritoneal
macrophages was also investigated in this study. RNA se-
quencing of nicotine/LPS-treated peritoneal macrophages
isolated from wild type and α7nAChR−/− mice identified
hairy and enhancer of split-1 (Hes1) as a key molecule to
activate the CAP. Hes1, which is a transcriptional repres-
sor, was reported to suppress production of inflammatory
cytokines and chemokines in macrophages (Hu et al.
2008; Shang et al. 2016). Hes1 expression was induced in
peritoneal macrophages by VNS or pulsed US, and adop-
tive transfer of Hes1-overexpressing peritoneal macro-
phages reduced renal IRI. These findings demonstrate that
α7nAChR-positive peritoneal macrophages are involved in
a non-canonical CAP and that Hes1 plays an important
role in activating the CAP to protect the kidneys
from injury.

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease that primarily affects joints (Smolen et al. 2018).
Symptoms include painful swollen joints and ultimately
bone destruction without effective treatment (Smolen et
al. 2016). Patients with RA have a mortality rate 1.5-
to1.6-fold higher than the general population (Sokka et
al. 2008). Pharmacological treatments include TNF
blocking agents and anti-IL-6 (Smolen et al. 2016). How-
ever, patients rarely reach remission with the current
treatments (Tak and Kalden 2011).
Given the lack of effective therapeutic options, recent

research has focused on other avenues of inflammation
suppression such as neuromodulation. A study by Koop-
man et al. demonstrated the possibility of changes in the
autonomic nervous system contributing to the onset of
RA (Koopman et al. 2016). Elevation of resting heart rate
in subjects at risk of RA indicated changes in autonomic
balance before the development of RA. This, along with
the recorded decrease in heart rate variability in RA
subjects, suggests greater sympathetic control in the
development of immune-mediated disease (Evrengul
et al. 2004). The control that the vagus nerve has
within the autonomic nervous system serves as a po-
tential target for decreasing inflammation. Recent
studies have demonstrated how the vagus nerve and
the CAP suppress the progression of RA.
To use the vagus nerve’s protective effect on RA, elec-

trical stimulation activates the CAP and induces a reduc-
tion in inflammatory cytokines. In a model of collagen-
induced arthritis, rats subjected to VNS had a 52% re-
duction in swelling of the ankle (Levine et al. 2014).

Additionally, levels of the inflammatory cytokines IL-1β,
IL-2, IL-6, and TNF were reduced in VNS subjects.
To solidify these findings, Koopman et al. (Koopman

et al. 2016) electrically stimulated the cervical vagus
nerve and found marked attenuation of RA symptoms
and inflammation in human subjects. The production of
inflammatory cytokines was inhibited in subjects with
VNS. In addition to the suppression of cytokine levels,
disease severity was significantly attenuated. These find-
ings indicate a pathway by which VNS can suppress the
symptoms and progression of RA.
Electrical stimulation of the cervical vagus activates

both efferent and afferent vagus nerve fibers. Using a dif-
ferent method of neuromodulation, Bassi et al. (Bassi et
al. 2017) stimulated the afferent fibers of the vagus nerve
to attenuate RA. In subjects treated with afferent VNS,
joint inflammation was suppressed. However, it was de-
termined that this method of controlling inflammation is
dependent on the local sympathetic nerves, which is a
novel finding (Fig. 2). Although most studies focus on
stimulation of the efferent vagus nerve pathway and its
systemic effect (Bassi et al. 2017), Bassi et al. outlined
mechanisms by which the treatment can locally regulate
inflammation through sympathetic networks. They also
showed that afferent VNS alleviated arthritic joint in-
flammation (Bassi et al. 2017). Notably, the protective ef-
fect persisted after splenectomy or subdiaphragmatic
vagotomy, which suggests that the mechanism is differ-
ent from the CAP. They performed additional experi-
ments and concluded that afferent VNS activates
sympathetic efferents through the CNS, which causes
the local release of norepinephrine from sympathetic
nerve terminals within joints, resulting in local regula-
tion of an innate immune response (Bassi et al. 2017).
Another group also demonstrated that activating ab-
dominal vagal afferent fibers suppressed systemic inflam-
mation after LPS administration and that the efferent
arm of this pathway is in the splanchnic sympathetic
nerves (Komegae et al. 2018).
To summarize, the attenuation of RA inflammation

through neuromodulation, specifically VNS, has been
found in many recent studies. However, as a topic that
requires further studying Bassi et al. (Bassi et al. 2017)
outlined an afferent pathway that locally suppresses
symptoms of RA through the activation of sympathetic
efferents (Fig. 2). Future research should focus on spe-
cific neural circuits that control inflammation in models
of arthritis.

Neuromodulation of gastrointestinal (GI) disorders using
bioelectronics
Crohn’s disease and ulcerative colitis, which are grouped
together in the category inflammatory bowel disease
(IBD), are painful and debilitating chronic inflammatory
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disorders of the gut that affect ~ 1.6 million people in
the US and are characterized by dysregulated responses
to the gastrointestinal microbiome. Symptoms include
diarrhea, abdominal pain, fatigue, weight loss, and others.
Anti-inflammatory and immunosuppressive treatments
typically used for IBD have numerous side effects, and
with chronic treatment they lose their effectiveness over
time in some patients.
The anatomy and physiology of the GI tract, as well as

the inflammatory profile of many GI disorders, makes
VNS (or in some cases other neuromodulatory modal-
ities) an attractive candidate as an alternative to existing
therapies. As in other diseases and disorders for which
VNS is currently approved as a treatment or is in clinical
trials, the strategy is to employ neural circuitry to
dampen inflammation in target organs by stimulating
anti-inflammatory pathways. The vagus (both afferent
and efferent vagus nerve fibers), thoracolumbar and sa-
cral nerves innervate the gut (stomach and intestines).
Experimental and clinical findings on the role of these
neuronal pathways of the autonomic nervous system in
regulating gastrointestinal function in normal health and
disease provide an anatomical and physiological rationale

for neuromodulation of GI disorders (Payne et al. 2019).
For example, blunted vagus nerve tone associated with a
pro-inflammatory profile has been observed in patients
with IBD (Pellissier et al. 2014) and suggests that a neur-
onal imbalance could be causative at least in part for dis-
ease manifestation. Reduced vagus nerve activity would
impact the CAP and could lead to elevated proinflamma-
tory factors (e.g, TNFα, which is high in IBD patients) and
conversely VNS of a suboptimally stimulated system could
restore downstream pathways in the CAP, such as redu-
cing TNFα release from macrophages systemically or from
gut resident macrophages (Fig. 1).
In preclinical studies VNS reduced inflammation in

trinitrobenzenesulfonic acid (TNBS)-induced colitis, an
experimental model of Crohn’s Disease in rats (Meregnani
et al. 2011) (Sun et al. 2013) (Jin et al. 2017). VNS also im-
proved survival and reduced inflammation in oxazolone-
induced colitis in mice, a model that is similar to severe
ulcerative colitis (Meroni et al. 2018). Small pilot clinical
studies have examined effectiveness of VNS in patients
with Crohn’s disease, including those patients refractory
to treatment. In the first study nine Crohn’s patients were
implanted with vagus nerve stimulators and stimulated

Fig. 2 Another anti-inflammatory pathway elicited by afferent vagus nerve stimulation. Afferent vagus nerve stimulation can elicit an anti-
inflammatory pathway involving sympathetic efferents through the central nervous system (CNS). In a model of joint inflammation, the local
release of norepinephrine from sympathetic nerve terminals within joints alleviates inflammation. On the other hand, the splanchnic sympathetic
nerve seems to be important to suppress systemic inflammation after lipopolysaccharide administration. Direct target(s) of the splanchnic nerve is
not clear. NTS, nucleus tractus solitarius
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chronically. Remission occurred in 5 of 9 patients (based
on clinical score, biological measures, endoscopic find-
ings) and vagal tone was restored (Bonaz et al. 2016).
While this study is promising, some patients did not
respond, inclusion was complicated to some degree by
variability of prior drug treatment (and whether patients
were undergoing standard care at the time of the trial),
and larger carefully controlled randomized trials are
needed.
Some of the clinical trials of bioelectronic neuromodula-

tion for other gastrointestinal and gastrointestinal-related
disorders, which may not in every case be targeting in-
flammatory parameters, have been reviewed recently
(Payne et al. 2019). These include trials on irritable bowel
syndrome (ClinicalTrials.gov Identifier: NCT02388269;
NCT02420158), postoperative ileus (disrupted GI motility
after abdominal surgery), obesity, gastroparesis, and colo-
rectal dysfunction (incontinence or constipation), and ma-
nipulations include blocking or stimulating the vagus,
sacral nerve stimulation, and gastric electrical stimulation.
A search of the keywords gastrointestinal and neuromo-
dulation in ClinicalTrials.gov returns 28 studies.
Treatment of GI diseases and disorders, like kidney in-

jury or disease, with neuromodulatory approaches, and
VNS in particular, faces a host of existing challenges.
From the standpoint of patient acceptance and as yet
undetermined relative treatment efficacy, invasive vs.
non-invasive (transcutaneous stimulation of vagal aur-
icular branch or cervical vagus) approaches need to be
carefully evaluated; patients may be inclined to either re-
sistance to or acceptance of surgical implantation. In the
case of VNS for depression and epilepsy, stimulation pa-
rameters (e.g., frequency and duration) have seen FDA
approval, but a careful analysis of efficacy vs. side effects
is needed for each new use. One approach to avoiding
surgical implantation has been to explore the effective-
ness of transcutaneous stimulation of either the cervical
vagus or transauricular branch of the vagus but rigorous
comparisons must be made to establish efficacy.
Finally, the goal of treatment of IBD is not only to re-

duce symptoms but also to promote healing of the mu-
cosal lining of gut and reestablish homeostasis. Careful
studies will be needed to determine if chronic anti-in-
flammatory strategies, or other physiological effects, me-
diated by neuromodulation play a role in the repair
process and reversal of dysbiosis.

Organ crosstalk: gut microbiota and the CAP in
progression of CKD
In the preceding sections, we reviewed the inflammatory
reflex pathway and its modulation with VNS to reduce
inflammation and preserve or improve function in acute
kidney injury, rheumatoid arthritis, and inflammatory
gastrointestinal disease. While these diseases share the

commonality of inflammation, they may otherwise seem
unrelated. However, interaction between distant tissues
can be important both physiologically and pathologically.
Normal homeostatic function is maintained by a com-
plex biological system of crosstalk between organs, but
this organ crosstalk can contribute to the detrimental ef-
fects of disease in one organ on the functional state of
distant organs. Organ crosstalk has been described in a
variety of diseases, including acute kidney injury (Lee et
al. 2018) and cardiorenal syndrome (Virzi et al. 2014).
The CAP, by linking nervous and immune systems to
modulate end organ inflammation, is an example of one
avenue of communication between various organ sys-
tems. Future studies will be needed to better define and
maximize the efficacy of bioelectronic medicine as it
relates to the vagus vis-à-vis organ crosstalk, as it is pos-
sible that manipulations such as VNS could benefit mul-
tiple organs. In this section, we aim to provide a
perspective on neuromodulation of the gastrointestinal
system at the level of the gut microbiome and how
organ crosstalk between the gut and kidney, including
effects of CKD on the gut microbiome, could be poten-
tially modulated by VNS to alter the progression of
CKD.
While gut microbiota, the diverse and numerous mi-

crobes that reside in the gastrointestinal tract, are known
to be critical to normal health, it is increasingly recog-
nized that gut dysbiosis, a condition of imbalance in the
normal microbiome, plays a role in a variety of diseases,
especially in those with an inflammatory component in-
cluding obesity (Kang and Cai 2017; Turnbaugh et al.
2006), diabetes mellitus (Weiss and Hennet 2017; For-
slund et al. 2015), asthma (Kang et al. 2017; Saltzman et
al. 2018), heart failure (Lau and Vaziri 2017), cancer
(Raskov et al. 2017; Dejea et al. 2018), IBD (Moustafa et
al. 2018), non-alcoholic fatty liver disease (Saltzman et
al. 2018; Henao-Mejia et al. 2012), chronic kidney dis-
ease (Lau and Vaziri 2017; Noel et al. 2014; Jazani et
al. 2019; Nigam and Bush 2019; Yang et al. 2018),
major depressive disorders (Zheng et al. 2016) and
cardiovascular disease (Carding et al. 2015).
The composition and function of commensal microor-

ganisms can be altered by foreign pathogens and other
environmental factors (such as diet, toxins and stress).
Resident microorganisms in the gut are essential for nor-
mal physiological processes such as development of the
immune system and metabolic regulation. Still, the host
must be protected from systemic invasion by both com-
mensal and pathogenic microorganisms, and this occurs
by a process that involves inherent physical, chemical
and biological barriers in the gut, including specialized
intestinal epithelial and immune cells and carefully or-
chestrated local and systemic interactions with the im-
mune system. Intestinal permeability is essential for fluid
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transport and nutrient uptake but permeability and bar-
rier function can be disrupted by host disease and can
contribute to a variety of inflammatory disorders. The
bidirectional interplay between local intestinal flora, the
gut epithelial barrier, and immunomodulatory processes
can impact other organs and disease progression and
vice versa. We highlight here the interactions between
the microbiome, the immune system, and the kidney in
CKD and at this point in time, hypothetical but intri-
guing possibilities for targeting mechanisms in the im-
mune reflex pathway to modulate these interactions.
CKD contributes to gut dysbiosis, including a pro-

found change in the composition of the gut microbiome
in patients with CKD or end stage renal disease and in
models of CKD in rats (Vaziri et al. 2013) and altered in-
testinal permeability (Knauf et al. 2019). Each of these
can have deleterious outcomes on CKD progression by
exacerbating chronic inflammation. Metabolic and im-
mune pathways respond to the gut microbiome, com-
municate with each other, and participate in kidney-gut
crosstalk. In the face of dysbiosis gut-microbiota-kidney
crosstalk both responds to and contributes to CKD.
The relationship between the gut and kidney is influ-

enced by two pathways: 1) metabolism-dependent and
2) immune-dependent pathways. Diet is important in
the gut microbiome (Gong et al. 2019); diets that are
high in fat and protein and low in fiber can lead to the
generation of “uremic toxins” by the gut microbiota (Sir-
ich et al. 2014). Two solutes, indoxyl sulfate and p-cresol
sulfate, thought to be uremic toxins, were reduced in
hemodialysis patients by ~ 30% when patients were
placed on a high fiber diet. These toxins are thought to
be derived from the colon as patients on hemodialysis
who had intact colons had higher levels of uremic
toxins than those who did not have colons (Aronov
et al. 2011). The gut microbiota also influences im-
munity. Bacterial products can activate toll-like recep-
tors on dendritic cells that induce T regulatory cells
to produce Il-10. Short chain fatty acids are ligands
for G protein-coupled receptor 43 (GPCR43) that is
expressed on intestinal epithelial cells, regulate T
regulatory cells and control barrier function by regu-
lating tight junctions (Knauf et al. 2019).
The vagus nerve plays a central role in the communi-

cation between the brain and the gut microbiota. Vagus
nerve afferents are distributed to all layers of the digest-
ive wall but do not penetrate to the lumen (Wang and
Powley 2007). Thus communication between gut micro-
biota to the vagus afferents is indirect through diffusion
of bacterial products or metabolites (Wang and Powley
2007). Activation of the vagal afferents by gut microbiota
leads to increased neuronal activity in the nucleus tractus
solitarius (NTS) followed by widespread activation of the
autonomic network (Good et al. 2018; Bonaz et al. 2018).

VNS leads to effects on gut inflammation/immunity as
well as epithelial permeability, but there is no evidence yet
that VNS alters gut microbiota (Bonaz et al. 2018).

Conclusions
The inflammatory reflex pathway consists of afferent
and efferent fibers of the vagus nerve as well as sympa-
thetic efferents that serve as a communication network
whereby the peripheral afferents can sense changes in
the local milieu sending information to the brain and re-
flex signals to curtail inflammation. The inflammatory
reflex pathway provides an opportunity to develop novel
pharmacological and nonpharmacological approaches.
The advantage of the latter is the ability to avoid lack of
specificity and off target effect of drugs. We have
highlighted the potential use of bioelectronic approaches
and the biological basis for activation of the inflamma-
tory reflex pathway in curtailing inflammation in various
inflammatory conditions. Further refinements in bioelec-
tronics continue to be developed. For example, minim-
ally invasive, targeted use of an ultrasound-guided
needle electrode can be used to stimulate the vagus
nerve (Huffman et al. 2019). Early clinical trials are
encouraging, however much work needs to be done to
define specific circuits that will improve precision.
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