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Abstract 

Background  Reduced heart rate (HR) during vagus nerve stimulation (VNS) is associated with therapy for heart 
failure, but stimulation frequency and amplitude are limited by patient tolerance. An understanding of physiological 
responses to parameter adjustments would allow differential control of therapeutic and side effects. To investigate 
selective modulation of the physiological responses to VNS, we quantified the effects and interactions of parameter 
selection on two physiological outcomes: one related to therapy (reduced HR) and one related to side effects (laryn-
geal muscle EMG).

Methods  We applied a broad range of stimulation parameters (mean pulse rates (MPR), intra-burst frequencies, and 
amplitudes) to the vagus nerve of anesthetized mice. We leveraged the in vivo recordings to parameterize and vali-
date computational models of HR and laryngeal muscle activity across amplitudes and temporal patterns of VNS. We 
constructed a finite element model of excitation of fibers within the mouse cervical vagus nerve.

Results  HR decreased with increased amplitude, increased MPR, and decreased intra-burst frequency. EMG increased 
with increased MPR. Preferential HR effects over laryngeal EMG effects required combined adjustments of amplitude 
and MPR. The model of HR responses highlighted contributions of ganglionic filtering to VNS-evoked changes in HR 
at high stimulation frequencies. Overlap in activation thresholds between small and large modeled fibers was consist-
ent with the overlap in dynamic ranges of related physiological measures (HR and EMG).

Conclusion  The present study provides insights into physiological responses to VNS required for informed parameter 
adjustment to modulate selectively therapeutic effects and side effects.
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Introduction
Vagus nerve stimulation (VNS) for treatment of heart 
failure (HF) showed promise in preclinical experiments 
(Li et al. 2004; Sabbah et al. 2005), but subsequent clini-
cal studies failed to meet efficacy endpoints (De Ferrari 
et al. 2014; Gold et al. 2016). A potential contributor to 
this discrepancy is the difference in stimulation titration 
(Ardell et al. 2017; Musselman et al. 2018): VNS in pre-
clinical studies often produced a slowing of heart rate 
(HR, bradycardia), whereas clinical stimulation ampli-
tudes were limited by patient tolerance to side effects 
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such as throat discomfort, and thus did not produce 
bradycardia (Sharma et al. 2020). We conducted preclini-
cal animal studies and computational modeling to iden-
tify stimulation parameters that were most effective at 
differentially modulating the effects of VNS on HR and 
skeletal muscle action (EMG), and the results inform 
parameter adjustment in future studies of VNS.

Devices using electrical stimulation should selectively 
activate fibers mediating therapeutic effects while mini-
mizing activation of off-target fibers causing side effects 
(Fitchett et al. 2021). For example, VNS protected against 
ventricular fibrillation during carotid artery occlusion in 
dogs at stimulation intensities that produced bradycardia 
(Vanoli et al. 1991). The therapeutic effect was preserved 
during atrial pacing, indicating that treatment was asso-
ciated with, but not directly mediated by, bradycardia 
(Li et al. 2004; Musselman et al. 2018). Proposed mecha-
nisms of action include improved autonomic balance, 
suppressed inflammation in cardiomyocytes, and inhibi-
tion of the renin-angiotensin-aldosterone system (Sabbah 
et al. 2011). A VNS protocol may aim to stimulate fibers 
responsible for bradycardia while avoiding fibers that 
cause laryngeal muscle contraction. However, achieving 
this separation is complicated by the heterogenous topol-
ogy of the cervical vagus nerve (CVN) and the depend-
ency of stimulation thresholds on nerve fiber diameter 
(Pelot and Grill 2020; Thompson et  al. 2019; Yoo et  al. 
2013). Large, myelinated A fibers mediate activation of 
muscles of the larynx and have lower stimulation thresh-
olds while smaller, thinly myelinated B fibers produce 
slowing of HR and have higher stimulation thresholds 
(Nicolai et al. 2020; Yoo et al. 2016). There is a need for 
alternative approaches that mitigate the detrimental 
effects of concomitant activation of off-target fibers and 
account for the complex relationships between VNS-
evoked muscle activation and HR reductions. Temporal 
patterns of stimulation may enable selective modulation 
of the physiological effects of activating target and off-
target fibers (Yoo et al. 2016).

Computational models of neural stimulation are used 
to synthesize experimental data, prototype novel elec-
trode designs, evaluate new stimulation parameters, 
and inform clinical diagnoses and treatment (Davis et al. 
2007; Howell and McIntyre 2017; Lempka et  al. 2020; 
Niederer et  al. 2019). Applications of computational 
models to peripheral nerve stimulation are largely limited 
to studies of nerve fiber activation (Helmers et al. 2012; 
Musselman et  al. 2021). However, given the widespread 
physiological therapeutic and side effects of VNS, there 
is a need for computational models of the end-organ 
responses to patterns of nerve fiber activation.

We paired preclinical in  vivo recordings of HR and 
laryngeal EMG in mice with integrated computational 

models to explore the effects and interactions of stimu-
lation parameter selection on nerve and physiological 
responses to VNS. We quantified in  vivo HR and EMG 
responses across amplitudes, frequencies (2 − 100 Hz), 
and temporal patterns of stimulation (regular, burst, and 
random). These data were leveraged to parameterize 
and validate computational models of the physiological 
responses (HR and laryngeal muscle activation) to VNS. 
The models were then used to gain insight into physi-
ological effects. These findings may be used to establish 
patterns of stimulation to control physiological responses 
and increase the dynamic range between generation 
of desired physiological responses and undesired side 
effects.

Methods
Animal preparation
We measured physiological responses to VNS in 10 
adult C57BL/6 J mice (4 females, 6 males, 8-10 weeks 
of age, Jackson Labs, Bar Harbor, ME, USA). We meas-
ured responses to an expanded range of stimulation 
amplitudes in an additional 4 animals (all males), and 
27 animals were required for protocol development and 
experimental troubleshooting (41 total). We reproduced 
the sample size used by a comparable study in dogs (Yoo 
et  al. 2016) to power the current study, and all subjects 
with recorded HR and EMG were included in the analy-
sis. Primary experimental measures were quantified HR 
and EMG, and the secondary calculated endpoint was 
effect score (see Signal quantification). The experimenter 
remained unblinded, and randomization of stimulation 
parameters and automated quantification of outcomes 
accounted for unblinded data collection.

Animals were anesthetized in an induction chamber 
with 5% sevoflurane and moved to a heating pad for the 
duration of the surgery where rectal temperature was 
monitored continuously and maintained approximately 
at 37 °C. We delivered maintenance anesthesia through a 
nose cone with sevoflurane (1.5-3%) and monitored anes-
thesia depth by heart rate and toe pinch reflex. We made 
a ventral midline incision to access the cervical space and 
isolated the right CVN from the carotid artery and inter-
nal jugular vein using blunt dissection. We implanted 
a bipolar cuff electrode on the CVN with 200 μm inner 
diameter and 895 μm center-to-center contact spac-
ing (FNC-200-V-R-A-30, Micro-Leads, Somerville, MA, 
USA). There was no explicit control of electrode polar-
ity and different animals received a mix of distal cathode-
leading and anode-leading bipolar stimulation.

Signal collection
Stimulation and recording were controlled using custom 
software in MATLAB R2016a (MathWorks, Natick, MA, 
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USA) and LabChart v7.3.8 (ADInstruments, Sydney, Aus-
tralia). All signals were collected using a PowerLab/16SP 
(ADInstruments). We recorded ECG using a 3-lead con-
figuration with the right forelimb as positive contact, left 
forelimb as the negative contact, and the left hindlimb 
as ground. We removed the insulation from the tips of 
2 stainless steel wires (0.0054-in. diameter) and placed 
them under the right side of the thyroid cartilage to 
measure EMG signals from laryngeal muscles (Fig. 1A). 
ECG and EMG signals were amplified with 400x gain by 
a preamplifier (C-ISO-256, iWorx, Dover, NH, USA) and 
10x by a biopotential amplifier (ETH-256, iWorx), band-
pass filtered between 10 Hz and 1 kHz, and sampled at 
5 kHz.

Stimulation voltage was produced by a Powerlab/16SP 
and converted to current using an analog stimulus 

isolator with a 1 V-to-1 mA conversion factor (Model 
2200, A-M Systems, Sequim, WA, USA). We delivered 
symmetric, biphasic, charge-balanced pulses with 300 μs 
per phase. Amplitude was titrated to produce a ~ 10% 
reduction in HR in response to 20 Hz VNS, which we 
defined as bradycardia threshold (BCT). We reassessed 
BCT every 10 trials.

We applied constant frequency VNS between 2 and 
100 Hz and designed burst patterns of stimulation to 
quantify the effects of intra-burst frequency and mean 
pulse rate (MPR) (Fig.  1B). Clinically, VNS is typically 
applied at 20-30 Hz (Musselman et  al. 2018; Thompson 
et  al. 2021). Patterns were repeated in concatenated 1  s 
epochs and MPR was calculated by the number of pulses 
applied per second; thus, the MPR is equivalent to the 
frequency for constant frequency stimulation and to the 

Fig. 1  In vivo data acquisition, stimulation parameter design, and outcomes quantification. A Schema of vagus nerve stimulation (VNS) showing 
cuff implantation site on the right cervical vagus nerve and two wire electrodes placed under the thyroid cartilage to measure EMG (adapted 
from (Tabler et al. 2017) under the Creative Commons Attribution License). B VNS parameters. “Amplitude”: stimulation amplitude of symmetric 
biphasic pulse (300 μs per phase) normalized to bradycardia threshold (BCT). “Mean Pulse Rate”: number of pulses applied per burst for 1 s repeating 
patterns (e.g., 10 pulses/s, 5 pulses/s). “Frequency”: intra-burst frequency of pulses (e.g., 40 Hz, 20 Hz). C Illustrative data from single trial (1.0xBCT, 
20 Hz constant frequency). ECG (top) used to quantify heart rate (HR, middle). EMG collected from same trial (bottom). VNS begins at t = 10 s and 
ends at t = 40 s (red bar). D Stimulation artifact removal using template subtraction and quantification of VNS-evoked EMG. Template subtraction 
was performed to remove stimulus artifact (left). Stimulus was applied at 1 ms and trigger signal was used to identify time-course of pulse (yellow 
dashed line at left). Second-wave (starting at 2.5 ms) was identified as VNS-evoked EMG. Rectified EMG quantified using average rectified value 
(EMGARV, red dashed) during window of EMG waveform (right, red shading)
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number of pulses per burst for burst pattern stimulation. 
We evaluated 8 constant frequencies and 28 burst pat-
terns (36 temporal patterns total), with intra-burst fre-
quencies between 2 and 100 Hz and MPR between 2 and 
100 pulses/s, which corresponded to 2 to 100 pulses per 
burst.

Stimulation frequencies and burst patterns were 
applied at BCT (1.0xBCT), 20% below BCT (0.8xBCT), 
and 20% above BCT (1.2xBCT) in randomized block trial 
format (108 combinations total). Pattern order was gen-
erated with the randperm(  ) function in MATLAB and 
experiment subject order was alternated based on sex. 
Each trial began with 10 s without stimulation to assess 
baseline, 30 s of VNS, and 30 s without stimulation for 
recovery (Fig. 1C).

We tested random patterns of VNS and their constant 
frequency controls at the end of the experiment. We 
designed random patterns of stimulation at 10 Hz and 
20 Hz MPR and compared outcomes to constant fre-
quency stimulation at 10 Hz and 20 Hz, respectively. Ran-
dom patterns were novel for each animal and produced 
by randomizing stimulation pulse positions within a 1 s 
epoch and repeating the pattern for 30 s. Patterns were 
not designed with uniform burst frequency or inter-pulse 
interval. Mean inter-pulse frequency ranged between 
13.0 and 35.6 Hz for random patterns with 10 Hz MPR 
and between 32.4 and 75.4 Hz for random patterns with 
20 Hz MPR. For each random stimulation pattern, we 
performed a trial with the constant frequency at the cho-
sen MPR (C1), followed by a trial of a random pattern of 
stimulation (R), and ended with another trial of constant 
frequency (C2).

We performed an end-of-study vagotomy (VNX) in 
all animals distal to the cuff to determine whether the 
observed responses were mediated by stimulation of 
afferent fibers within the cuff, efferent fibers within the 
cuff, or current leakage. To quantify the effects of VNX, 
we performed a trial (1.0xBCT, 20 Hz constant fre-
quency) before and after vagotomy, and we quantified the 
resulting changes in EMG and HR.

In one animal, we only tested a single stimulation ampli-
tude (animal HU0: 1.0xBCT). High noise in the electro-
physiological signal led to the removal of five trials in two 
animals (Animal NN5: 1.2xBCT, 50 Hz intra-burst fre-
quency, 10 pulses/s; 1.0xBCT, 100 Hz intra-burst frequency, 
30 pulses/s. Animal YR5: 0.8xBCT, 50 Hz intra-burst fre-
quency, 20 pulses/s; 1.2xBCT 100 Hz intra-burst frequency, 
20 pulses/s; 1.0xBCT, 100 Hz intra-burst frequency, 30 
pulses/s). In one animal from the temporal pattern experi-
ments described above (animal DP8) and in four additional 
animals (animals AA1, AB1, LV4, and WI7), we evaluated a 

wider range of stimulation amplitudes (0.2xBCT-2.0xBCT 
in steps of 0.2xBCT in randomized order) with constant 
frequency stimulation at 20 Hz.

Signal quantification
We analyzed HR offline from ECG data by quantifying 
the inter-QRS periods. Custom software automatically 
identified the positive peak of the QRS complex and cal-
culated instantaneous HR using a sliding window (win-
dow size =  0.5 s; time increments of 0.1 ms). Baseline HR 
(HRbaseline) was calculated as the mean of the instantaneous 
HR during the first 10 s of the trial. Stimulation was deliv-
ered for 30 s (from t = 10 to 40 s); HR during stimulation 
(HRstim) was quantified between t = 15 and 40 s, where the 
initial 5  s were not included to account for the transient 
response. We normalized HR during stimulation to pre-
stimulation baseline (HRnorm) to adjust for the variation of 
resting HR (typically 400 to 500 BPM):

HRnorm values less than 1 indicated a reduction in HR 
during stimulation, i.e., bradycardia.

We removed stimulus artifact from EMG by template 
subtraction to visualize EMG waveform (Fig. 1D). Tem-
plates were the average signal between 1 ms before and 
1 ms after stimulus trigger. We quantified VNS-evoked 
EMG by taking the average rectified value (EMGarv) 
during a window after each pulse based on the wave-
form of the evoked EMG signal (from 1 ms post-pulse 
to 5 to 8 ms post-pulse, depending on EMG waveform). 
The EMGarv was then summed for all stimulation pulses 
delivered during the trial and normalized to the response 
at 1.0xBCT, 20 Hz constant frequency stimulation for 
that animal:

where i is the pulse index, and n is the total number of 
pulses during the trial (equal to the product of MPR and 
stimulation time of 30 s).

To quantify the relative HRnorm and EMGnorm responses 
to a given stimulus, we defined an effect score that nor-
malized both effects to the response from each animal 
1.0xBCT, 20 Hz constant frequency stimulation. A positive 
effect score indicated a greater relative HRnorm response, 
and a negative effect score indicated a greater relative 
EMGnorm response.

HRnorm = HRstim/HRbaseline

EMGnorm =
∑n

i
EMGarv,i∕

[

∑n

i
EMGarv,i

]

1.0xBCT,20Hz

effect score =
(

1 −HRnorm )∕( 1 −HRnorm,1.0xBCT,20Hz

)

− EMGnorm



Page 5 of 26Huffman et al. Bioelectronic Medicine             (2023) 9:3 	

Computational models
We simulated VNS-evoked changes in HR and laryngeal 
EMG using computational models that we parameterized 
using our in vivo data.

Computational model of parasympathetic innervation 
of the sinoatrial node
Vagal efferents innervate post-ganglionic ICNS cells, 
which in turn release acetylcholine (ACh) to the 
sinoatrial node (SAN) and inhibit oscillatory firing of 
pacemaker cells (Hanna et al. 2021; Jänig 2011). To model 
VNS effects on HR, we designed and implemented a 
model of VNS-evoked vagal cardiac efferent signals 
through the intrinsic cardiac nervous system (ICNS) 
(Fig. 7A). We modeled the SAN as a network of coupled 
pacemaker cells with firing rate assumed to be the heart 
rate; the SAN firing rate slowed in response to the ACh 
release from the ICNS. We implemented the models in 
Python v3.8.5 and NEURON v7.8.2 (Hines and Carnevale 
1997; Van Rossum and Drake 2009).

We first modeled the connection from the vagal effer-
ent fibers to the ICNS. In Wistar rats, each pre-ganglionic 
cardiac vagal efferent synapses onto one post-ganglionic 
cell in the ICNS (McAllen et  al. 2011), and frequency-
dependent filtering occurs at the VN-to-ICNS synapse 
(Rimmer and Harper 2006). We created a population of 
100 phenomenological post-ganglionic ICNS cells that 
could each be activated by a single pre-synaptic (vagal) 
source. We fit a function to the published frequency-
dependent failure rate of vagally-evoked post-ganglionic 
events measured in an ex vivo preparation using Wistar 
rats (Rimmer and Harper 2006). The probability that an 
action potential in the preganglionic cell causes ACh 
release from the ICNS cell was a function of the time 
since the last action potential in the ICNS cell:

where t is the time of an action potential in the VN (i.e., 
preganglionic cell) and t0 is the time of the previous 
action potential in the ICSN cell (i.e., post-ganglionic 
cell) (in ms, Additional  file  1: Fig.  12). With each vagal 
event, a random number generator (scope _ random( ) in 
NEURON HOC programming language) defined a value 
between 0 and 1; successful transmission of the VN-to-
ICNS synapse occurred if the variable was less than the 
Success Probability. ICNS cells in rats exhibit intrinsic 
firing that is linked to respiration (McAllen et  al. 2011) 
and approximately half of the ICNS cells from that study 
(6 of 10) fired independently of applied stimuli. We 
extracted phasic firing rates from (McAllen et  al. 2011) 

Success Probability(t) = 1.028 − 2.183

∗
(

t − t0

)−0.7146

and incorporated probabilistic intrinsic firing into 50 of 
our 100 ICNS cells (Additional file 1: Fig. 13). Firing rates 
varied from 0 to 0.6 events per 50 ms bin.

We then implemented a multi-compartment model of 
ACh release from ICNS cells to the SAN (Dokos et  al. 
1996b) and validated our implementation using data 
from the publication (Additional file 1: Fig. 14). The three 
model compartments are the pre-synaptic main store 
(of post-ganglionic cell), the neuroeffector junction, and 
the extra-junctional space. Parameters were unchanged 
from the published model except the available pre-syn-
aptic ACh concentration was increased from 0.04 mM to 
0.075 mM to produce small fluctuations in SAN network 
firing rate (~ 0.2%) in response to ICNS intrinsic firing 
and subsequent ACh release.

Recent models of SAN cells include two oscillatory 
systems: the membrane clock (cell depolarization aris-
ing from transmembrane ion currents) and calcium 
clock (cell depolarization arising from internal calcium 
ion dynamics) (Maltsev et al. 2014). We used a published 
model of a SAN cell with both membrane and calcium 
clock mechanisms (Kharche et  al. 2011) with updated 
ion current mechanisms (Morotti et  al. 2021) which 
were: long-type calcium current (ICaL), potassium cur-
rents (Ito and Isus), and “funny” current (If). We validated 
our implementation by comparing the transmembrane 
potential, ionic currents, and intracellular ion concen-
trations to data from published plots and a published 
version in MATLAB (Additional file 1: Fig. 15) (Morotti 
et al. 2021).

We expanded the single-cell SAN model to a network 
of 100 cells (10-by-10 grid) where cells sharing an edge 
were connected by 6 nS gap junctions, using published 
SAN gap junction conductance (Verheijck et  al. 2001). 
We incorporated post-synaptic ACh-sensitive mecha-
nisms consisting of ACh-gated potassium channel and 
modulation of the “funny” current, long-lasting calcium 
ion channel, and the rate of sarcoplasmic reticulum 
uptake of calcium (Severi et al. 2012). To account for the 
cell size differences between the rabbit and mouse SAN 
models, we scaled the maximum conductance of the 
ACh-gated potassium channel based on cell capacitance 
(original values: 0.00864 μS and 32 pF; adjusted values: 
0.00675 μS and 25 pF). As the SAN is the site of initiation 
for propagating potentials throughout the heart, the fir-
ing rate of the SAN cells on the periphery of the network 
was interpreted as HR, which had a mean of 389 BPM in 
the absence of VNS.

We simulated VNS amplitude by altering how many 
of the 100 SAN cells received VNS-evoked ACh release, 
termed ACh density, between 0 to 100. We minimized 
the error between the modeled HRnorm and the in  vivo 
HRnorm at constant frequencies between 2 and 100 Hz 
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using a bisection search method for each stimulation 
amplitude. Thus, higher amplitudes were represented 
by higher ACh synapse densities (Table  1). Using the 
parameterized model, we simulated the changes in HR 
in response to constant frequency and burst patterns of 
stimulation across stimulation amplitudes, using the trial 
structure described for the in  vivo experiments. Each 
simulation was run 10 times, and variability in model 
outcomes arose from random number generation for the 
success probability function at the VN-to-ICNS synapse, 
ICNS intrinsic firing, and positional assignment of SAN 
cells receiving VNS-evoked ACh.

Computational model of vagal motor innervation 
of the larynx
We modeled VNS-mediated activation of laryngeal mus-
cles using a published model of skeletal muscle activa-
tion and fatigue (Ding et  al. 2003). The model includes 
two primary features: (1) force production arising from 
motor unit activation and (2) fatigue from persistent acti-
vation. We validated our implementation by replicating 
published plots of force production and dynamic fatigue 
parameters during a simulation of burst pulse electrical 
stimulation (30 Hz, 1.5 s on, 0.5 s off) (Additional file  1: 
Fig. 16) (Ding et al. 2003).

Computational model outcomes were calculated by 
the force-time integral (Fig. 8A) normalized to the 20 Hz 
constant frequency response (Forcenorm):

The computational model of force had no stochasticity 
and was run once for each pattern of stimulation.

The relationship between EMG and force is approxi-
mately linear during isometric contractions (Ibitoye 
et  al. 2014). The EMG-force relationship has been 
established for surface EMG recordings from humans 
during voluntary and stimulation-evoked contractions 

Forcenorm =

∫ end

t=0

(Force)dt/

[

∫ end

t=0

(Force)dt

]

20 Hz

(Lawrence and De Luca 1983; Mizrahi et  al. 1997). 
Rat laryngeal muscles are composed primarily of 
fast twitch motor units (Hoh 2005), and we assumed 
VNS-evoked contractions were isometric due to ana-
tomical size of mouse larynx (~ 1.5 mm in diameter 
(Tabler et  al. 2017)). Thus, we assumed a 1:1 linear 
relationship between in  vivo EMG and modeled force 
(EMGnorm = Forcenorm).

We parameterized the model with our in  vivo data 
using a particle swarm optimization (PSO) algorithm; 
the PSO method for global optimization was chosen due 
to its suitability for problems with multiple free param-
eters (8 parameters; Table  2) and continuous values of 
the search space. A PSO algorithm works by iteratively 
testing a collection (swarm) of parameter sets. The per-
formance of each parameter set (particle) was evaluated 
using a cost function. The particle’s parameter values 
(position) were updated based on the particle’s perfor-
mance and the performance of the other particles until 
the optimization reached a predefined iteration limit 
(Parsopoulos and Vrahatis 2002).

Patterns of stimulation (constant frequency and 
burst) were assigned randomly into “training” and “test-
ing” groups with a 50-50 split (18 patterns per group). 
We assessed error for “training” patterns of stimula-
tion (training error) during the PSO iterations, and we 
assessed error for “testing” patterns of stimulation (test-
ing error) and all patterns of stimulation (total error) at 
the end of the PSO.

The swarm had 100 particles, where each particle con-
sisted of a parameter set that defined a candidate model. 
We defined the initial swarm with random values from 
uniform distributions bounded by the minimum and 
maximum values for each parameter (Table 2). For each 
particle, we simulated the model response to each train-
ing pattern of stimulation and calculated the correspond-
ing cost:

where n is the training pattern index, N is the total num-
ber of training patterns (18 patterns), and EMGnorm is the 
mean normalized EMG across animals.

The swarm was divided into 20 neighborhoods with 5 
particles each; the same neighborhood groupings were 
maintained for the duration of the PSO run. The position 
of each particle was updated at the end of each iteration 
based on its performance, the performance of the other 
particles in its neighborhood, and the performance of all 
particles in the swarm:

Cost =
n Forcenorm − EMGnorm

2

N

Pi,new = Pi,Previous + Vi

Table 1  Number of the 100 sinoatrial node cells that received 
VNS-evoked ACh release (i.e., ACh density) across stimulation 
amplitudes (0.8-, 1.0-, and 1.2-times bradycardia threshold (BCT)) 
in a computational model of parasympathetic innervation of the 
sinoatrial node

Stimulation Amplitude Simulated 
ACh 
Density

0.8xBCT 28

1.0xBCT 50

1.2xBCT 57
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where Pi, new is the updated particle position (vector of 8 
parameter values), Pi, Previous is the current particle posi-
tion, and Vi is the change in position (velocity) defined 
by:

where rand( ) is a random number drawn from a uniform 
distribution from 0 to 1.496 (Clerc and Kennedy 2002; 
Poli et al. 2007). Pbest, 1 and Pbest, 2 are defined by the per-
formance of Pi relative to the ranked performance of par-
ticles within the neighborhood:

where Pbest, global is the lowest-cost particle in the whole 
swarm and Pbest, neighborhood is the lowest-cost particle 
within the neighborhood of Pi. The position of Pbest, global 
was not updated. Pbest, global could also Pbest, neighborhood in 
its neighborhood.

Each PSO run consisted of 50 iterations. The par-
ticle with the best performance (lowest cost) in the 
final iteration was tested with the 18 combinations of 

Vi = rand( ) ∗
(

Pbest,1 − Pi

)

− rand ( ) ∗
(

Pbest,2 − Pi

)

if Pi = Pbest,neighborhood →

{

Pbest,1 = Pbest,global

Pbest,2 = P2nd best,neighborhood

if Pi = P2nd best,neighborhood →

{

Pbest,1 = Pbest,neighborhood

Pbest,2 = P3rd best,neighborhood

else →

{

Pbest,1 = Pbest,neighborhood

Pbest,2 = P2nd best,neighborhood

stimulation patterns that were not used for training 
(testing error).

We performed 5 PSO runs, each with a unique ini-
tial population and with unique “training” and “test-
ing” groups (Additional file 1: Fig. 17). The final model 
was selected based on the lowest total error across 
the 5 PSO runs (Table  2, Additional file  1: Fig.  17A), 
although it did not have the lowest training error. To 
confirm that the initial particle position did not deter-
mine the PSO parameter values, we performed 5 addi-
tional PSO runs using the same “training” and “testing” 
patterns of stimulation used to identify the optimal 
solution but with different initial particle positions; 
the PSO converged on the same cost function value 
and parameter values (Additional file 1: Fig.  17B). All 
PSO runs had a stable minimum cost across the swarm 
after the 20th iteration, indicating that 50 iterations 
were sufficient for convergence.

Computational model of fiber activation in mouse VNS
We modeled mouse VNS using ASCENT v1.1.4 (Mus-
selman et  al. 2021) to create a finite element model of 
the nerve and cuff electrode in COMSOL Multiphysics 
v5.6 (COMSOL Inc., Burlington, MA), solve for elec-
tric potentials in the tissue, and apply the potentials 
using the in  vivo stimulation waveform to models of 

Table 2  Parameter units, definitions, and values for force fatigue model (Ding et al. 2003). Parameter range values were defined by 
values used in the referenced paper and an associated follow-up study for simulations of skeletal muscles (Doll et  al. 2017). PSO-
identified values were used for all simulations unless otherwise stated. Ding et al. 2003 values used in model perturbation simulations

Free parameters for muscle activation model (Ding et al. 
2003)

Range minimum Range maximum PSO-identified value Ding et al. 2003 value

Parameter Unit Definition

A N/ms Scaling factor for force and shorten-
ing velocity of muscle

0.11 10 10 3.0009

Km – Sensitivity of strongly bound cross-
bridges to Ca2+-troponin complex

0.01 0.50 0.50 0.103

τ1 ms Time constant of force decline at the 
absence of strongly bound cross-
bridges

2.00 200 2.00 50.957

τ2 ms Time constant of force decline due 
to the extra friction between actin 
and myosin resulting from the pres-
ence of cross-bridges

5 100 100 100

αA ms−2 Fatigue coefficient for force-model 
parameter A

1 -1 −0.51 −4.0*10−7

αKm ms−1 N−1 Fatigue coefficient for Km -1*10− 4 1*10− 4 9.97*10−5 1.9*10− 5

ατ1 N− 1 Fatigue coefficient for τ1 0 1*10−3 160*10−7 2.1*10−5

τfat s Time constant controlling recovery 
of force model parameters from 
fatigue

80 160 160 127
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biophysically-realistic mammalian myelinated fibers in 
NEURON v7.6 (Hines and Carnevale 1997).

Figure  11D shows the geometry of the finite element 
model of mouse VNS. We used ASCENT’s mock nerve 
morphology generator to create a cross section of a gen-
eralized mouse cervical vagus nerve that was mono-
fascicular nerve and 180 μm in diameter (Stakenborg 
et  al. 2020). We extruded the cross section  25 mm lon-
gitudinally. We modeled the 200 μm diameter bipolar 
Micro-Leads cuff (Somerville, MA, USA) that was used 
in vivo and placed it halfway along the nerve, with 10 μm 
between the nerve and the cuff’s inner surface. We mod-
eled a 10 μm thick saline layer over all surfaces of the cuff. 
The nerve and cuff were modeled in a cylinder of skel-
etal muscle (6 mm in diameter, 25 mm in length), and we 
grounded all outer surfaces of the model.

We assigned material conductivities to all domains 
using values from literature (Table  3). The perineurium 
was defined by a surface impedance (Pelot et  al. 2019; 
Weerasuriya et al. 1984):

with thickness based on published linear fits to fascicle 
diameter in rat cervical vagus nerves (Pelot et al. 2020).

where thkperi and dfasc are in microns. We modeled the 
cuff with a silicone substrate and thin platinum contacts, 
and we modeled a point current source in each contact 
(Pelot et  al. 2018). We used COMSOL’s conjugate gra-
dients to solve Laplace’s equation using second order 
solution and geometry shape functions for each contact 
delivering 1 mA. We weighted and summed the contribu-
tions of each contact to calculate extracellular potentials 
for bipolar stimulation. We confirmed that activation 

Rm =
thkperi

σperi

thkperi = 0.01292 ∗ dfasc + 1.367

thresholds did not change by more than 2% when com-
pared to models with higher mesh density, longer model 
length, or wider model diameter (Howell et al. 2014).

We simulated thresholds for 1000 model A fibers and 
1000 model B fibers randomly positioned in the nerve 
cross section. We assumed a truncated normal distribu-
tion of diameters which we restricted to two standard 
deviations from the mean (A fibers: 7 to 11 μm, B fibers: 
2 to 5 μm); we chose diameters based on published fiber 
diameters in the rodent cervical vagus nerve (Licursi de 
Alcântara et  al. 2008; Stakenborg et  al. 2020), and the 
conduction velocity of these fibers agrees with in  vivo 
recordings from the vagus nerve in pigs and dogs (Nicolai 
et al. 2020; Yoo et al. 2013). We shifted each fiber longi-
tudinally along the length of the nerve by a random value 
drawn from a uniform distribution from − 0.5*INL to 
0.5*INL (INL: internodal length, i.e., distance between 
the nodes of Ranvier for that fiber diameter).

We simulated thresholds for fibers in response to a 
300 μs per phase biphasic symmetric rectangular pulse 
with no delay between phases to match the waveform 
that was used in vivo. Using a bisection search algorithm 
(1% tolerance), we solved for threshold current ampli-
tudes required to initiate an action potential in each fiber. 
We detected action potentials (i.e., Vm passing − 30 mV 
with a rising edge) at 90% of the fiber length, near the 
end of the fiber distal to the cathode-leading electrode 
contact.

Statistics
Statistical analyses were performed using JMP Pro v15.0.1 
(SAS Institute Inc., Cary, NC, USA) and Microsoft Excel 
v16.64 (Microsoft Corporation, Redmond, Washington, 
USA). Outcomes were analyzed using omnibus 2-way 
analysis of variance (ANOVA) for constant frequency 
stimulation (frequency and amplitude), omnibus 3-way 
ANOVA for burst patterned VNS (inter-burst frequency, 
mean pulse rate, and amplitude), and single ANOVA for 
individual factors where appropriate. Tukey post-hoc 
tests with Bonferroni corrections were used to compare 
mean responses to responses to 1.0xBCT, 20 Hz, which 
was used for defining BCT and for EMG normalization. 
We performed an effect size analysis by calculating the 
sum of squares (SS) for factors and interactions. We cal-
culated percent variability explained by a given factor by 
dividing the factor SS by the grand SS (all data points). 
We performed linear regressions using MATLAB, and 
coefficient of determination and p-values were computed 
using the fitlm( ) function. All data are reported as means 
± standard deviations unless otherwise stated.

Table 3  Material conductivities used in the finite element model 
of mouse VNS

Material Electrical 
Conductivity σ 
[S/m]

References

Muscle {0.086, 0.086, 0.35} (Gielen et al. 1984)

Silicone 10−12 (Callister and Rethwisch 2012)

Platinum 9.43 × 106 (de Podesta 1996)

Saline 1.76 (Horch 2017)

Perineurium 0.0008703 (Pelot et al. 2019; Weerasuriya et al. 
1984)

Endoneurium {0.167, 0.167, 0.571} (Pelot et al. 2019; Ranck and BeMent 
1965)
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Results
In vivo experiments
We conducted acute experiments in sevoflurane-anes-
thetized mice to quantify the effects of VNS on HR and 
EMG. All analyses of effects of stimulation parameters 
included data from at least 8 animals.

Physiological responses to constant‑frequency stimulation
We quantified the effects of constant frequency VNS 
on HR and EMG (Fig.  2). BCT was defined (median: 
0.12 mA, range: 0.04 to 0.8 mA) with a constant fre-
quency of 20 Hz to produce a 10-15% reduction in 
HR (HRnorm = 0.84 ± 0.07) (Fig.  2A). HR was reduced 

Fig. 2  In vivo responses to constant frequency stimulation (intra-burst frequency (Hz) equals mean pulse rate (pulses/s)) of the mouse right cervical 
vagus at amplitudes of 0.8xBCT (green), 1.0xBCT (blue), and 1.2xBCT (orange). A Heart rate normalized to pre-stimulation baseline (HRnorm). B EMG 
normalized to response from stimulation at 1.0xBCT, 20 Hz (EMGnorm). C Effect score combining both heart rate and muscle responses normalized 
to response from stimulation at 1.0xBCT, 20 Hz. Data are presented as mean ± standard error with individual animals as light lines, n = 9-10/
parameter set. The standard errors at 20 Hz for 1.0xBCT are 0 because those data points were used for normalization. *p < 0.05 in Tukey post-hoc 
test, comparing to mean responses to stimulation at 1.0xBCT, 20 Hz
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more by higher stimulation frequencies and ampli-
tudes, and the effects of frequency on HRnorm plateaued 
between 50 and 100 Hz for all three amplitudes. After 
omnibus ANOVA test (F(41,182) = 14.5, p  < 0.0001), 
we found that HRnorm was sensitive to stimulation 
amplitude (F(2,221) = 21.0, p  < 0.0001) and frequency 
(F(7,216) = 25.5, p  < 00.001), but not the interaction 
between amplitude and frequency (F(23,200) = 0.9, 
p  = 0.617). Animal was not a significant factor 
(F(9,214) = 1.5, p = 0.141).

We compared HRnorm for each parameter set to the 
response to 1.0xBCT at 20 Hz stimulation. At 1.0xBCT, 
stimulation at 50 Hz (0.63 ± 0.15, p = 0.00926) and 100 Hz 
(0.60 ± 0.19, p  < 0.000567) reduced HRnorm compared to 
20 Hz stimulation, but not 30 Hz or 40 Hz. At 1.2xBCT, 
stimulation at 30 Hz (0.64 ± 0.13, p  = 0.0297), 40 Hz 
(0.53 ± 0.17, p  < 0.0001), 50 Hz (0.50 ± 0.23, p  < 0.0001), 
and 100 Hz (0.48 ± 0.23, p  < 0.0001) reduced HRnorm 
compared to 1.0xBCT 20 Hz stimulation (Additional 
file 1: Table 4). No frequency and amplitude combination 
increased HRnorm compared to 1.0xBCT 20 Hz.

EMGnorm monotonically increased with stimulation fre-
quency (2 to 100 Hz) for all amplitudes but changed little 
across amplitudes for a given frequency (Fig.  2B). After 
omnibus ANOVA test (F(41,182) = 22.3, p  < 0.0001), we 
found that EMG was sensitive to frequency (F = 117.9, 
p < 0.0001), but not stimulation amplitude or the ampli-
tude-frequency interaction (F(2,221) = 0.8, p  = 0.443; 
F(23,200) = 0.08, p  = 0.999 respectively). We observed 
a slight increase in average EMGnorm for 1.2xBCT com-
pared to 0.8xBCT and 1.0xBCT at 50 and 100 Hz, but this 
was driven by two outliers. Animal was not a significant 
factor (F(9,214) = 0.6, p = 0.806).

We compared EMGnorm for each parameter set to the 
response to 1.0xBCT at 20 Hz stimulation. Post hoc anal-
ysis revealed that 2 Hz evoked smaller EMGnorm com-
pared to 1.0xBCT 20 Hz for all stimulation amplitudes 
(0.8xBCT: p  = 0.0320, 1.0xBCT: p  = 0.0296, 1.2xBCT: 
p  = 0.0476) (Additional file  1: Table  5). Conversely, 50 
and 100 Hz evoked higher EMGnorm at all amplitudes 
(50 Hz, 0.8xBCT: p  = 0.0359, 1.0xBCT: p  = 0.0103, 
1.2xBCT: p  < 0.0001; 100 Hz, 0.8xBCT: p  < 0.0001, 
1.0xBCT: p  < 0.0001, 1.2xBCT: p  < 0.0001). We did not 
observe different EMGnorm at 5 Hz, 10 Hz, 30 Hz, or 40 Hz 
at any amplitude when compared to 1.0xBCT, 20 Hz. 
The similarity across amplitudes is consistent with the 
ANOVA findings that EMGnorm was insensitive to ampli-
tude and reports of EMG saturation at BCT in dogs (Yoo 
et al. 2016) and pigs (Nicolai et al. 2020), indicating EMG 
saturation over the tested range of stimulation ampli-
tudes (0.8xBCT-1.2xBCT).

The effect score quantified the relationship between 
VNS-evoked changes in HR and laryngeal muscle 

activation where positive values were associated with the 
physiological proxy for therapeutic effects (decreased 
HRnorm) and negative values were associated with 
side effects (increased EMGnorm) (Fig.  2C). We did not 
observe obvious monotonic trends across stimula-
tion frequency for the effect score, although frequency 
effects were clear for HRnorm and EMGnorm separately. 
Higher amplitudes produced higher effect scores for 
frequencies above 20 Hz. After omnibus ANOVA 
test (F(41,182) = 4.7, p  < 0.0001), we found that the 
effect score increased with amplitude (F(2,221) = 20.2, 
p  < 0.0001). Neither frequency nor the amplitude-
frequency interaction influenced the effect score 
(F(7,216) = 1.1, p  = 0.390; F(23,200) = 1.1, p  = 0.403, 
respectively). No combination of amplitude and fre-
quency produced a different effect score when compared 
to 1.0xBCT, 20 Hz (0 by definition) in post hoc analysis 
(Additional file  1: Table  6). We unexpectedly observed 
an effect of animal (F(9,214) = 3.2, p = 0.0011), in con-
trast to HRnorm and EMGnorm outcomes. Data from a 
single animal (XX9) exhibited comparatively lower effect 
scores and its exclusion removed the effect of animal. 
In summary, HRnorm decreased with increased stimula-
tion frequency and amplitude, EMGnorm increased with 
increased frequency, and Effect Score increased with 
increased amplitude.

Physiological responses to temporal patterns of stimulation
We designed a set of burst patterns to probe the impor-
tance of temporal pattern on VNS outcomes. Burst 
patterns differentially modulated the three outcomes 
(HRnorm, EMGnorm, and effect score). After omnibus 
ANOVA test (F(106,900) = 37.8, p  < 0.0001), HRnorm 
was sensitive to amplitude, frequency, and MPR 
(F(2,1004) = 81.5, p  < 0.0001; F(7,999) = 4.0, p  = 0.0002; 
F(7,999) = 80.6, p  < 0.0001, respectively, Fig.  3A). How-
ever, these findings were qualified by interactions 
between amplitude and MPR (F(23,983) = 4.3, p < 0.0001), 
frequency and MPR (F(35,971) = 1.8, p = 0.0023), but not 
amplitude and frequency (F(23,983) = 0.6, p = 0.930).

HRnorm decreased with increased amplitude or 
increased MPR, and higher amplitudes increased the 
effect of MPR on HR, as observed in response to constant 
frequency VNS (Fig.  2). Generally, constant frequency 
stimulation produced greater changes in HR than burst 
patterns of equal MPR. Reduced changes in HR with 
burst frequencies compared to constant frequencies 
of equivalent MPR was most notable at 1.2xBCT, less-
ened at 1.0xBCT, and abolished at 0.8xBCT. Compared 
to 1.0xBCT, stimulation with 0.8xBCT did not decrease 
HRnorm, stimulation MPR values greater than 40 pulses/s 
could decrease HRnorm at 1.0xBCT, and stimulation 
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MPR values as low as 30 pulses/s could reduce HRnorm at 
1.2xBCT (p < 0.05, Additional file 1: Table 4).

Higher intra-burst frequency decreased the effect of 
MPR on HR, and this was not an effect exclusively of 
burst duration and pause duration. For example, pat-
terns with equal burst duration and pause duration (0.5 s 
burst + 0.5 s pause, i.e., 50% duty cycle) reduced HRnorm 
with increased MPR and amplitude (Additional file  1: 
Fig. 18). In contrast to findings with constant frequency 
stimulation, we detected differences across animals 
(F(9,997) = 15.2, p < 0.0001).

Burst patterns had effects comparable to constant 
frequency stimulation on EMGnorm. After omnibus 
ANOVA test (F(106,896) = 37.1, p  < 0.0001), EMGnorm 
was dependent on MPR (F7,995) = 295.5, p < 0.0001) but 
not amplitude or intra-burst frequency (F(2,1000) = 1.3, 
p  = 0.264; F(7,995) = 0.7, p  = 0.667, respectively, 
Fig. 3B), and none of the interaction terms was signifi-
cant. In contrast to constant frequency stimulation, 
inter-individual differences affected EMGnorm during 
burst patterns of stimulation (F(9,993) = 7.4, p < 0.0001). 
Given that pattern did not affect the EMG response, we 
again found patterns with MPR of 2 and 5 produced less 
muscle activation while greater muscle activation was 
observed with patterns with MPR of 40, 50, and 100 
(along with 1.2xBCT, 30 Hz constant frequency stimula-
tion) (p < 0.05, Additional file 1: Table 5).

Effect score was calculated for each trial and nor-
malized to the individual response at 1.0xBCT, 20 Hz 
(Fig.  3C). With few exceptions, effect scores for burst 

patterns of stimulation did not differ from constant 
frequency stimulation at equal MPR. After omni-
bus ANOVA (F(106,896) = 20.6, p  < 0.0001), the effect 
score was dependent on amplitude, frequency, and 
MPR (F(2,1000) = 86.3, p  < 0.0001; F(7,995) = 4.6, 
p < 0.0001; F(7,995) = 4.8, p < 0.0001, respectively), and 
there was an interaction between amplitude and MPR 
(F(23,979) = 5.7, p < 0.0001) but not between amplitude 
and frequency (F(23,979) = 0.7, p = 0.866) or frequency 
and MPR (F(35,967) = 1.3, p  = 0.0851). There was an 
effect of animal on effect score that was consistent with 
our other outcomes using burst patterns of stimulation 
(F(9,993) = 51.4, p < 0.0001).

Three patterns of stimulation produced effect scores 
different than 1.0xBCT, 20 Hz constant frequency. Two 
patterns at 0.8xBCT produced lower effect scores (i.e., 
emphasized muscle effects over HR effects): 100 Hz con-
stant frequency (effect score = − 1.63, p  = 0.0152) and 
100 Hz, 50 MPR (effect score = − 1.72, p = 0.0050). The 
only pattern to improve effect score was 1.2xBCT, 40 Hz 
constant frequency stimulation (effect score = 1.82, 
p = 0.0014) in contrast to the lack of significance when 
the post-hoc test was performed with constant frequency 
data only (p  = 0.128). In summary, HRnorm decreased 
with increased stimulation amplitude, increased 
MPR, and decreased intra-burst frequency; EMGnorm 
increased with increased MPR; Effect Score increased 
with increased amplitude and decreased intra-burst fre-
quency; and the effect of MPR on Effect Score depended 
on amplitude.

Fig. 3  In vivo responses to burst patterns of VNS at amplitudes of 0.8xBCT (top row), 1.0xBCT (middle row), and 1.2xBCT (bottom row) across mean 
pulse rates (x-axis) and intra-burst frequencies (color). A Illustration of stimulation parameters, including amplitude (0.8xBCT, 1.0xBCT, and 1.2xBCT), 
mean pulse rate (MPR), and intra-burst frequency. B Heart rate normalized to pre-stimulation baseline (HRnorm). C EMG normalized to response from 
stimulation at 1.0xBCT, 20 pulses/s, 20 Hz (EMGnorm). D Effect score combining both heart rate and EMG responses normalized to the response from 
stimulation at 1.0xBCT, 20 pulses/s, 20 Hz. Data are presented as mean ± standard error with individual data points as points, n = 8-10/parameter set
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Effect size analysis to determine relative importance 
of stimulation parameters
To determine further the contributions of each stimula-
tion parameter to changes in physiological responses, we 
conducted an effect size analysis (Fig. 4). For HRnorm, the 
MPR was the dominant parameter (explained 36% of var-
iance), followed by amplitude (14% of variance) (Fig. 4Ai). 
We then sub-divided the data by MPR and found the rel-
ative contribution of amplitude to be frequency-depend-
ent with a maximum effect at 30 MPR (24% of variance) 
(Fig. 4Aii).

When the same analysis was applied to EMGnorm, MPR 
explained 68% of variance, and across the other stimulation 
factors, only the interaction term between frequency and 
MPR contributed more than 1% (6% of variance) (Fig. 4Bi). 
The effect size of inter-individual variability, i.e., animal, 
increased with MPR and was largest at 100 MPR (63% of 
variance) (Fig. 4ii).

MPR explained much less of the variation in effect score 
when compared to the separate analyses of HRnorm and 
EMGnorm (3% of variance compared to 36 and 68%, respec-
tively) (Fig.  4Ci). Rather, inter-animal variability was the 
dominate factor (32%), suggesting that HR and EMG inter-
acted differently across animals. Frequency and MPR con-
tributed only 3% of variance each. The interaction between 
amplitude and MPR explained more variance than in the 
separate analyses of HRnorm and EMGnorm (12% of variance 
compared to 9 and 0.8%, respectively). When the data were 
sub-divided by MPR, the effect size trends followed those 
observed in HRnorm, where the effect size of amplitude was 
dependent on MPR and peaked at 30 MPR (45% of vari-
ance) (Fig. 4Cii).

Physiological responses to random patterns of stimulation
We conducted VNS trials with random patterns of stimu-
lation paired with constant frequency trials that had the 
same MPR (Fig. 5A). The HRnorm and EMGnorm responses 
did not change between the first constant frequency trial 
(C1), the random pattern trial (R), or the second constant 
frequency trial (C2) for MPRs of 10 Hz (F(2,27) = 0.76, 
p = 0.477; F(2,27) = 1.23, p = 0.309, respectively) or 20 Hz 
(F(2,27) = 0.55, p = 0.586; F(2,27) = 1.13, p = 0.339, respec-
tively) (Fig. 5B, C).

To determine if HRnorm or EMGnorm responses were 
influenced by pattern frequency characteristics other 
than MPR, we performed linear regressions between each 
response and the mean inter-pulse frequency (<IPF>) 

and the geometric mean IPF (<IPF >  Geom). Neither out-
come correlated with frequency characteristics of patterns 
(Additional file 1: Fig. 19). While burst patterns altered HR 
response, these results indicate that random patterns did 
not affect HRnorm nor EMGnorm compared to constant fre-
quency of equivalent MPR. In summary, the effects of ran-
dom patterns of stimulation did not differ from constant 
frequency stimulation and frequency characteristics of the 
random patterns (mean IPF, geometric mean IPF) did not 
influence outcomes.

Distal vagotomy abolished VNS‑evoked physiological 
responses
To determine whether VNS-evoked effects were medi-
ated by efferent fibers, we performed an end-of-study 
vagotomy. We compared HR and EMG during trials of 
1.0xBCT, 20 Hz constant frequency stimulation before 
and after transection of the cervical vagus nerve distal 
to the stimulation cuff (Fig.  6A-B). Vagotomy abolished 
HR (p  < 0.0001, Fig.  6D) and EMG responses to VNS 
(p  < 0.0001, Fig.  6E). No evoked EMG waveforms were 
observed post-VNX (Fig.  6C), and non-zero values of 
post-transection EMGnorm (Fig.  6E) arose from a sub-
stantial noise floor for some animals. Therefore, physi-
ological responses were mediated by efferent vagal fiber 
activation.

Computational models
Parameterization of HR model and response to constant 
frequency stimulation
We implemented a computational model of CVN-to-
ICNS connections, post-ganglionic release of ACh, and 
ACh-mediated changes to SAN cell firing rate (Fig. 7A). 
Our implementation of a single mouse-specific SAN cell 
was validated with published data and publicly avail-
able code (Additional file 1: Fig. 15). Trial structure and 
calculation of HRnorm in the model mirrored the in vivo 
measurements (Fig.  7B). We simulated the response to 
5, 20, and 50 Hz constant frequency stimulation and 
found a monotonic decrease in HRnorm with increasing 
active ACh synapse density (proxy for stimulation ampli-
tude) (Fig.  7C). Higher frequencies produced steeper 
decreases in HRnorm and asystole at ACh synapse densi-
ties above 70% at 50 Hz. We identified a synaptic density 
associated with each stimulation amplitude (0.8xBCT, 
1.0xBCT, and 1.2xBCT) using a bisection search method 

Fig. 4  Effect size analysis across VNS parameters (normalized heart rate (HRnorm), (A); normalized EMG (EMGnorm), (B); effect score (C), for responses 
across all burst patterns (left, i) and for responses subdivided by mean pulse rate (MPR; right, ii). Statistical significance was analyzed with a 
three-way ANOVA, including factors of amplitude (yellow), intra-burst frequency (red), mean pulse rate (blue), interaction between amplitude and 
frequency (orange), interaction between amplitude and mean pulse rate (green), interaction between frequency and mean pulse rate (purple), 
animal (dark blue), and unaccounted variance (grey). #p > 0.05, **p < 0.01, ***p < 0.001 in multi-way ANOVA

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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that minimized the error between measured HRnorm 
and modeled HRnorm (Table 1). The interaction between 
amplitude and frequency in modeled outcomes matched 
trends of measured HR in our in vivo data (Fig. 2A) and 
was also consistent with prior in vivo studies in dog (Yoo 
et  al. 2016). Model outcomes were within one standard 
deviation (SD) of in vivo measurements for 92% of cases: 
6 of 8 constant frequencies for 0.8xBCT, 8 of 8 constant 
frequencies for 1.0xBCT, and 8 of 8 constant frequencies 
for 1.2xBCT (Fig. 7D).

Parameterization of muscle activation model and response 
to constant frequency stimulation
Model parameterization was necessary because model 
outcomes did not agree with in vivo outcomes when we 
used published parameter values (identified from stud-
ies of human quadriceps muscle, Table 2 and Fig. 8B). 
We parameterized our muscle activation model using 
our in vivo EMG responses to 1.0xBCT because stimu-
lation amplitude accounted for only a small proportion 
of the in vivo data variance of EMG (Fig. 4Bi). We opti-
mized the model parameters against the mean response 
across animals for 18 randomly selected temporal 
stimulation patterns, and the PSO-identified model 
parameter values that generated the lowest model error 
(Table 2) were used for subsequent simulations.

Model responses were within one SD of in vivo meas-
urements for all constant frequencies tested (Fig.  8B). 
Further, the simulation-evoked force (Fig. 8C-E, black) 
matched most closely measurements of force produc-
tion from fast, fatigable (FF) motor units (Fig.  8C), 

which are the most prevalent in mouse laryngeal 
muscles (Hoh 2005), but did not match well with fast, 
fatigue-resistant (FR) (Fig.  8D) or slow (S) (Fig.  8E) 
motor unit force production. Conversely, the human 
quadriceps femoris muscles have a much higher pro-
portion of S motor units and lower proportion of FF 
motor units than mouse laryngeal muscles (Hoh 2005; 
Staron et  al. 2000). Indeed, model responses using 
parameters associated with quadriceps femoris mus-
cles (Fig.  8C-E, grey) agreed less with FF motor units 
(Fig. 8C) and more with S motor units (Fig. 8E).

Models replicated physiological responses to broad range 
of VNS parameters
We quantified model responses to all 108 parameter com-
binations tested in  vivo, across stimulation amplitudes, 
mean pulse rates, and intra-burst frequencies (Fig.  9). 
Simulated HRnorm was within one SD of the in vivo data 
for 89% of cases (Fig. 9A and Additional file 1: Table 7), 
and the largest model errors were HRnorm underestima-
tion at 0.8xBCT and 1.0xBCT and HR overestimation 
at 1.2xBCT. Modeled HRnorm followed in  vivo trends: 
higher MPR caused a greater decrease in HRnorm, lower 
intra-burst frequency caused a larger decrease in HRnorm 
for a given MPR, and the effect of intra-burst frequency 
increased with amplitude (Additional file 1: Fig. 20A).

Similarly, modeled muscle activation fell within one 
SD of the in vivo EMG data in 92% of cases (Fig. 9B and 
Additional file  1: Table  8) and followed the monotonic 
relationship between muscle activation (Forcenorm) and 
MPR observed in  vivo (EMGnorm) (Additional file  1: 

Fig. 5  In vivo responses to constant frequency VNS and random patterns of stimulation with an equivalent mean pulse rate of 10 Hz (dashed lines) 
or 20 Hz (solid lines) at 1.0xBCT. Trials were delivered in a standard order with constant frequency stimulation (C1), the trial of random pattern of 
stimulation (R), and the second trial of constant frequency stimulation (C2) for 20 Hz and 10 Hz. Data from individual animals are in gray, and the 
population response is in black (mean ± standard error; n = 10). A Example constant frequency and random pattern pulse trains for MPR = 10 
pulses/s. B Heart rate normalized to pre-stimulation baseline (HRnorm). C EMG normalized to the response during C1, 20 Hz stimulation (EMGnorm). 
n.s., not significant, n = 10
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Fig.  20B). Model error was dependent on intra-burst 
frequency, with slight overestimation at the lowest and 
highest intra-burst frequencies and underestimation at 
intermediate intra-burst frequencies. Across MPRs, the 
model slightly overestimated muscle activation for intra-
burst frequencies between 2 and 10 Hz, underestimated 
muscle activation between 30 and 50 Hz, and overesti-
mated muscle activation at 100 Hz.

We combined the outcomes from the HR and muscle 
activation to calculate the effect score as we did for the 
in vivo data (Fig. 9C and Additional file 1: Table 9). As the 
muscle model did not incorporate stimulation amplitude, 
we modeled stimulation amplitude in the HR model only 
and used the muscle model outcomes from 1.0xBCT to 
calculate the effect score at all three amplitudes (Addi-
tional file 1: Fig. 20C). The modeled effect score increased 

with increased stimulation amplitude, reproducing 
in  vivo trends, and effect scores were within one SD of 
the in  vivo data in 98% of cases (Fig.  9C). The sign of 
the effect score is a key metric for interpreting whether 
stimulation parameters increase cardiac response over 
muscle response (positive) or vice versa (negative), and 
the sign of the mean model effect scores matched in vivo 
values in 77% of cases.

Model performance suffers when ICNS mechanism 
was removed
Although computational models are useful for design-
ing optimal temporal patterns of stimulation (Brocker 
et  al. 2017; Cassar et  al. 2017), the small effect size 
of intra-burst frequency and the lack of difference 
between response to random versus constant frequency 

Fig. 6  Vagotomy (VNX) distal to the stimulation cuff abolished VNS-evoked responses. A-B Example heart rate (HR) and EMG responses. Stimulation 
was applied at 20 Hz at bradycardia threshold (BCT) determined pre-VNX from t = 10 s to t = 40 s (red bar). A HRnorm pre-VNX (black) and post-VNX 
(purple). B EMGnorm pre-VNX (black) and post-VNX (purple). C EMG response to a single stimulation pulse pre- and post-VNX. D HRnorm pre- and 
post-VNX. E EMGnorm pre- and post-VNX. *** p < 0.0001, n = 10
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patterns indicate that HR, muscle activation, and the 
effect score were insensitive to the temporal pattern of 
VNS. Therefore, we used the model to determine the 
contributions of VN-ICNS synaptic filtering to the HR 
response to VNS.

We removed the frequency-dependent ICNS filter-
ing, and thus each VNS pulse caused ACh release to 
the SAN (Fig. 10A). We then simulated HR in response 
to constant-frequency VNS at 1.0xBCT. The modified 
model matched in  vivo measurements up to 50 Hz but 
greatly overestimated the bradycardia effect at 100 Hz 
(Fig.  10Bi). Further, the modified model overestimated 
bradycardia for MPR values > 30 pulses/s (Fig.  10Bii), 
indicating that the frequency-dependent filtering at VN-
ICNS synapses was critical to replicate changes in HR in 
response to VNS pulses delivered at intra-burst frequen-
cies > 50 Hz.

Extended amplitude range produced overlap of dynamic 
range of HR and EMG
In the in vivo recordings described above, the EMG sig-
nal was saturated across all VNS amplitudes (0.8xBCT 
to 1.2xBCT). Therefore, we investigated the effects of a 
broader range of stimulation amplitudes, from 0.2xBCT 
to 2.0xBCT (n = 5, Fig. 11). Bradycardia onset occurred 
at ~ 0.6xBCT and HRnorm monotonically decreased with 
increased stimulation amplitude (Fig.  11A). EMGnorm 
showed less clear trends across animals: onset occurred 
at 0.4xBCT (except for one animal with measurable 
EMG at 0.2xBCT), the signal increased sharply until 
0.8xBCT, and it then either plateaued or continued to 
increase with increased amplitude. The EMG waveform 
changed with stimulation amplitude (Fig.  11B), indi-
cating that responses included activation of additional 
motor units.

Fig. 7  Implementation and validation of a model of VNS effects on HR. A Schema of computational model. VNS pattern served as input 
from the cervical vagus nerve (CVN) to post-ganglionic cells in the intrinsic cardiac nervous system (ICNS). ICNS included mechanisms for 
frequency-dependent VN-to-ICNS synaptic failure and ICNS intrinsic firing. ACh release from ICNS cells to sinoatrial node (SAN) cells was modeled 
using a three-compartment model; post-synaptic mechanisms for ACh-dependent modulation of ion channels and internal calcium storage were 
incorporated in our 10-by-10 network of SAN cells. The network of SAN cells consisted of spontaneously firing cells. The mean firing rate of the SAN 
cells on the periphery of the 10-by-10 network was interpreted as HR. B Model responses where SAN cell firing (i) was used as a proxy for HR (ii). 
To compare with in vivo data, HR during stimulation (t = 15 s to 40 s) was normalized to pre-stimulation baseline (t = 0 to 10 s) (iii). The first 5 s of 
stimulation were excluded from analysis due to the transient response in HR. C Stimulation amplitude was simulated by adjusting the number of 
SAN cells receiving VNS-evoked ACh release from the cells of the ICSN (Synapse Density) during constant frequency stimulation (5, 20, and 50 Hz) 
for mean (black line) and SE (grey shaded area). Higher stimulation amplitudes were implemented as higher synaptic densities. D Model outcomes 
(dashed lines) compared to in vivo data (solid lines). Data are presented as mean ± standard error, n = 9-10 per parameter set for in vivo data, n = 10 
runs per parameter set for model data
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We paired a finite element model of the mouse vagus 
nerve and cuff electrode (Fig.  11C) with biophysical 
models of myelinated fibers to investigate overlap in the 
dynamic ranges of physiological outcomes. We found 
strong agreement between model A fiber thresholds and 
in  vivo EMGnorm thresholds for 3 of 5 animals (Addi-
tional file  1: Fig.  21A) and between B fiber thresholds 
and in vivo bradycardia onset (Additional file 1: Fig. 21B). 

However, the model underestimated saturation of B fib-
ers since the HR continued to decrease in vivo even at the 
highest amplitudes tested.

Recruitment order of the modeled fibers was driven 
by longitudinal fiber alignment for A fibers (Fig.  11E) 
and by fiber diameter for B fibers (Fig.  11D). There-
fore, although the B fibers were smaller in diameter 
and smaller fibers generally have higher activation 

Fig. 8  Computational model of VNS-evoked muscle contractions. A Modeled force from VNS pulse (dashed line) and pulses (solid line). Model 
output was quantified by the force-time integral (gray area). Simulation parameters used are from (Ding et al. 2003). B Responses to constant 
frequency VNS in vivo (solid line), model using (Ding et al. 2003) parameters (dotted line), and model using PSO-identified parameters (dashed line). 
C-E Model of force production using Ding 2003 parameters (grey) and PSO-identified parameters (black) overlaid on force measurements from 
different types of skeletal muscle motor units (MU) in the rat medial gastrocnemius (Celichowski et al. 2014). Force was normalized by maximum 
force. C Modeled and in vivo data from fast fatigable MU (FF MU) response to 20 Hz stimulation. D Model and data from fast fatigue-resistant motor 
unit (FR MU) response to 40 Hz stimulation. E Model and data from slow MU (S MU) response to 16.6 Hz stimulation

Fig. 9  Comparisons of simulated and in vivo data. A Comparison of modeled and in vivo HRnorm at stimulation amplitudes of 0.8xBCT (green), 
1.0xBCT (blue), and 1.2xBCT (orange). B Comparison of modeled and in vivo EMGnorm and Forcenorm at only 1.0xBCT. C Model effect score 
calculations used HRnorm at the color-coded stimulation amplitudes, but Forcenorm at only 1.0xBCT. Data are presented as mean ± SD (vertical bars 
for in vivo SD and horizontal bars for model SD), n = 8-10 per parameter set for in vivo data, n = 10 runs per parameter set for HR model and n = 1 
run per muscle model. Coefficient of determination (R2) of linear fit (solid red line in each panel; 95% confidence interval in dashed red lines in each 
panel). Gray 1:1 lines represent perfect agreement (in vivo = model)
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thresholds (Woodbury and Woodbury 1990), the mod-
eled A and B fiber thresholds had overlapping ranges 
(Fig.  11D-E), consistent with the in  vivo recordings 
(Fig. 11A). Thus, the longitudinal alignment of the fib-
ers’ nodes of Ranvier with respect to the electrode con-
tacts provides a mechanism of recruitment order that 
is not solely driven by fiber diameter, causing overlap 
of dynamic ranges of neural responses between popula-
tions of nerve fibers in the mouse CVN that are distinct 
in function and relative excitability.

Discussion
We quantified the effects of VNS parameters on physi-
ological responses in vivo and in a computational model. 
We measured VNS-evoked changes in HR and laryngeal 
EMG in anesthetized mice; MPR had the greatest effect, 
and bradycardia and EMG increased with increased 
MPR. Intra-burst frequency affected HR, but the effect 
size was modest (2.7% of variance explained) and con-
tributed more to variance with increased MPR at values 
above those used clinically (40 and 50 pulses/s). EMG 
was influenced by the number of pulses applied per sec-
ond (frequency with constant frequency and MPR with 
burst patterns) but insensitive to intra-burst frequency 
and amplitude over the tested range. Taken together, 
these findings indicate that our stimulation amplitudes 
produced saturation (or near saturation) of A fibers and 
were within in the dynamic range of B fiber activation.

We defined the effect score to quantify the difference 
between HR and EMG responses to VNS parameters. 
MPR explained the largest portion of variance among all 
factors for HR and EMG, but MPR had little impact on 

effect score. This discrepancy between individual meas-
ured outcomes and the combined effect score demon-
strates that MPR drives the physiological responses to 
stimulation but cannot be adjusted in isolation to alter 
independently HR or muscle activation. Rather, ampli-
tude adjustments were also required to alter effect score, 
likely due to the high effect size of amplitude on heart 
rate and low effect size on EMG. We identified 1.2xBCT 
at 40 Hz to be the single parameter combination to influ-
ence HR over EMG as defined by the effect score (effect 
score = 1.82), compared to 1.0xBCT at 20 Hz (Cohen’s 
d = 2.38). Our effect score metric for VNS optimization 
differs from comparable studies. For example, a study 
in dogs identified burst patterns of stimulation that 
produced bradycardia with significantly lower laryn-
geal EMG (Yoo et  al. 2016). Alternatively, a “selectivity 
index” was defined in rats where B fiber selectivity was 
achieved using high stimulation intensities and longer 
pulse widths (Chang et al. 2022). Choice of optimization 
paradigm may be defined by the goals and limitations of 
the application; for example, parameter adjustment may 
aim to decrease laryngeal EMG from a defined base-
line (e.g., 20-30 Hz), minimize bradycardia, or maximize 
bradycardia.

We observed a plateau in changes in HR and reduced 
rate of increase in EMG at higher MPR. Similar studies 
in rats have noted plateaued or decreased bradycardia 
effects at frequencies above 50 Hz (Chang et  al. 2022; 
Hotta et  al. 2009). While conduction failure of periph-
eral nerve axons is possible (Zhu et  al. 2009), HR and 
EMG non-linearity at high MPR could be explained 
through ganglionic fidelity and fatigue, respectively. 

Fig. 10  Model perturbations cause the model response to deviate from in vivo data. A Diagram of the computational model of the connection 
of the cervical vagus nerve (CVN) to the sinoatrial node (SAN) of the heart without the intrinsic cardiac nervous system (ICNS) (Fig. 7A). Stimulation 
pulses (VNS) cause release of acetylcholine (ACh) to the SAN cells. B Normalized heart rate (HRnorm) response to VNS for in vivo data at bradycardia 
threshold (solid line), original model with ICNS (dashed line), and model with no ICNS (dot-dashed line) for constant frequency stimulation (i) 
and burst patterns with intra-burst frequency of 100 Hz (ii). Data presented as mean ± standard error, #difference between modeled HRnorm and 
measured HRnorm exceeded one standard deviation of in vivo data, n = 8-10 per parameter set for in vivo data, n = 10 runs per parameter set for 
computational models
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Frequency-dependent synaptic failure between CVN 
fibers and ICNS cells occurs in rats, and higher stimula-
tion frequencies resulted in lower fidelity (Rimmer and 
Harper 2006). Indeed, the model substantially overesti-
mated the reductions in heart rate at higher frequencies 

and MPRs when we removed synaptic failure, indicat-
ing that the ICNS network is a key factor in frequency-
dependent VNS-induced changes in HR. The one-to-one 
ICNS relay network was informed by studies in rats 
(McAllen et  al. 2011; Rimmer and Harper 2006), but 

Fig. 11  Stimulation amplitude affected heart rate (HR) and laryngeal muscle activation (EMG) in vivo and in computational models. A 
Normalized heart rate (HR; dashed lines) decreased with increased amplitude for all animals. Onset of changes in heart rate occurred at ~ 0.6xBCT 
(BCT = bradycardia threshold). Normalized EMG responses (solid lines) across stimulation amplitudes varied between animals. Onset of EMG 
response occurred at ~ 0.4xBCT to 0.6xBCT, and the normalized EMG increased with stimulation amplitude (n = 5 animals). Color denotes animal. B 
Illustrative EMG signals from one animal (LV4) in response to a single pulse delivered at different stimulation amplitudes (color). Stimulation onset 
and artifact are represented as an arrow and grey box, respectively. Increased stimulation amplitude resulted in shorter EMG latency, change in 
EMG waveform, and merging of EMG and stimulation artifact. C Finite element model of the mouse vagus nerve and bipolar cuff electrode. The 
perineurium sheath around the fascicle and the surrounding muscle are not shown. D Recruitment curves for model A and B fibers colored to 
indicate fiber diameter. E Recruitment curves for model A and B fibers colored to indicate fiber jitter (i.e., the relative position of the center node of 
Ranvier along the length of the nerve)
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the frequency effects may not be conserved across spe-
cies. For example, ICNS cells in pigs do not receive direct 
synaptic connections to the soma, but have disperse den-
dritic arbors (Hanna et al. 2021), requiring integration of 
multiple preganglionic inputs which may influence gan-
glionic fidelity.

A similar non-linearity was observed in the frequency 
response of EMG recordings. This non-linearity may 
be due to the force-frequency relationship of muscles 
whereby force output is saturated at increased stimula-
tion frequencies. Our quantification of in  vivo muscle 
activation summed all EMG signals during the trial. If 
each evoked EMG signal was identical, we would expect 
a linear relationship between stimulation frequency and 
EMG. However, the evoked EMG response fell below this 
linear line at higher frequencies (40-100 Hz) due to EMG 
waveform changes during stimulation (Additional file 1: 
Fig.  22). During high frequency trials, evoked EMGs 
declined in amplitude, indicative of muscle fatigue (Ibi-
toye et al. 2014). Clinically relevant frequencies (10-30 Hz 
constant frequency stimulation) would not likely produce 
the same fatigue effects, but muscle fatigue produced by 
high frequency stimulation should be considered with 
new stimulation paradigms such as micro-burst (250-
300 Hz) (de la Garza et al. 2019; Martlé et al. 2014).

We used 1 s epochs for burst patterns and random pat-
terns of stimulation based on previous literature (Yoo 
et al. 2016) and did not explore different epoch durations. 
Intrinsic vagal and ICNS activity produces fluctuations of 
HR linked to respiration (~ 60 breaths per minute in anes-
thetized mice) (McAllen et al. 2011; Simms et al. 2007), 
i.e., the respiratory sinus arrhythmia. While we applied 
VNS agnostic to intrinsic vagal activity, future efforts 
should investigate the effects of VNS timing with respira-
tion, an approach used in other peripheral nerve stimula-
tion applications (Heiser et  al. 2019). Timed application 
of VNS during periods of reduced intrinsic vagal activ-
ity (inhalation) could reduce average HR and lower HR 
variability while stimulation during periods of increased 
intrinsic vagal activity (exhalation) could lower the mini-
mum instantaneous HR and increase HR variability.

Experiments were conducted under sevoflurane, which 
produces a notable decrease in resting HR (Cesarovic 
et al. 2010) but does not influence muscle activity during 
isometric contraction (Ginz et al. 2004). In rats, the stim-
ulation amplitude to produce a 5-10% reduction in HR 
was lower when the animal was awake than under isoflu-
rane anesthesia (Ahmed et al. 2021), and the relationship 
with MPR, intra-burst frequency, and amplitude may be 
different in awake animals. General anesthesia dampens 
sympathetic activity (Wood 1994) and modulates reflex-
ive activity from excitation of vagal afferents (Ahmed 
et al. 2021; Ardell et al. 2017).

Anatomical differences in vagal innervation of the 
heart informs selection of which side VNS is delivered. 
Stimulation of the right CVN produces greater changes 
in HR compared to stimulation of the left CVN in rats 
(Stauss 2017) and humans (Premchand et  al. 2014). We 
applied stimulation to the right CVN, which is used 
in clinical trials for treatment of HF (De Ferrari and 
Schwartz 2011), but is avoided in treatment of epilepsy 
where cardiac effects of VNS are considered unwanted 
side effects (Yuan and Silberstein 2016). However, simi-
lar bradycardia effects were observed in rats (Hotta et al. 
2009) and pigs (Yamakawa et al. 2014), casting doubt on 
strict guidelines for lead placement to induce or avoid 
cardiac effects from stimulation.

We confirmed that changes in HR and EMG were 
mediated by vagal efferent fibers by distal transection 
of the vagus nerve. Stimulation of the proximal trunk 
did not induce tachycardia nor did stimulation of the 
intact nerve with low amplitudes. Conversely, VNS 
studies in dogs observed tachycardia during stimula-
tion which was purported to arise through activation 
of sympathetic fibers encased with the CVN in the 
carotid sheath (Yoo et  al. 2016) or reflexive activation 
of sympathetic mechanisms mediated by vagal afferents 
(Ardell et  al. 2015). Sympathetic efferents within the 
cervical vagus nerve have been identified in cats (Ago-
stoni et al. 1957), dogs (Onkka et al. 2013), and humans 
(Seki et al. 2014) but not yet in mice.

We implemented computational models of VNS-
induced changes in HR and laryngeal muscle activation 
that reproduced in vivo responses to temporal patterns. 
We included amplitude-dependent changes in HR 
response by altering the number of SAN cells receiv-
ing ACh release in response to stimulation pulses; the 
model slightly overestimated the response (lower simu-
lated HRnorm compared to in vivo data) for 0.8xBCT and 
1.0xBCT while the model underestimated the response 
at 1.2xBCT. This could be a result of the parameteriza-
tion method for determining ACh synapse density. The 
bisection search method was constrained to data from 
constant frequency stimulation trials including 100 Hz. 
At these higher frequencies, the model could simulate 
asystole at sufficient ACh synapse density (50 Hz syn-
apse density curve, Fig. 7C) and bias the search method. 
VNS can produce asystole, but likely at greater stimula-
tion intensities than predicted by the model. Improved 
model performance at high stimulation frequencies 
may require integration of sympathetic reflexes, as low 
HR engages compensatory sympathetic mechanisms to 
increase HR.

While we stimulated the source of parasympathetic 
efferent cardiac fibers, we did not investigate the con-
tribution of sympathetic modulation of HR. Primary 
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sympathetic innervation to the ICNS and cardiac myo-
cytes is supplied by the stellate ganglia (Fedele and Brand 
2020); in pigs, stellate ganglia cell firing is modulated by 
apnea on the order of seconds (Sudarshan et  al. 2021), 
indicating rapid sympathetic engagement by reflexive 
pathways. In some cases, we observed saw-tooth pat-
terns of instantaneous HR in response to burst patterns 
of VNS with high MPR (e.g., 100 Hz intra-burst fre-
quency, 50 Hz MPR) and post-stimulation HR tachycar-
dia (HRnorm  > 1). The HR model, which did not include 
reflexive sympathetic mechanisms, did not produce such 
HR dynamics in simulations of identical stimulation pat-
terns (Additional file 1: Fig. 23). Further analysis of time-
dependent HR dynamics may elucidate the time-course 
of HR recovery after VNS-induced bradycardia via sym-
pathetic mechanisms.

Phenomenological models of VNS effects on HR 
can replicate a range of cardiac responses to VNS (e.g., 
(Haberbusch et al. 2022)). However, such models cannot 
leverage biological mechanisms to predict stimulation 
outcomes that were not used to parameterize the model. 
For example, a biologically informed model of VNS may 
predict bradycardia-induced arrhythmias through inclu-
sion of myocardia conduction (e.g., the SAN network) 
whereas the phenomenological models would not unless 
data of arrhythmias were used for model training. We 
did not observe arrhythmias in our SAN network model, 
consistent with reports of electrical stability of mouse 
cardiac tissue; transgenic approaches may be necessary 
to reproduce arrhythmias (Choy et al. 2016; Dobrev and 
Wehrens 2018).

Our parameterized model of muscle force matched 
in vivo findings but required several assumptions. Direct 
measurement of laryngeal muscle force was infeasible 
for model validation and comparisons. Rather, we relied 
on a linear relationship between EMG and force, which 
has been demonstrated in patients with functional elec-
trical stimulation (FES) (Mizrahi et  al. 1997) and simu-
lations of synchronized motor unit activity (Zhou and 
Rymer 2004). With this assumption, we found strong 
agreement between in vivo and modeled muscle activa-
tion, although these results could be further validated 
through modeling EMG and directly comparing model 
outcomes with in vivo measurements (Petersen and Ros-
talski 2019). We assumed that muscle activation as quan-
tified by EMG was an appropriate metric for side effects 
of VNS experienced by patients. Parametric studies with 
patients using VNS could verify patient discomfort cor-
relates with muscle activation as measured by EMG. Sev-
eral muscle model parameters reached value constraints 
defined by published studies of human quadriceps femo-
ris force production. While we observed good agreement 
in modeled and measured muscle activation, further 

investigation of model constraints and optimization is 
warranted.

The agreement in effect score between in  vivo meas-
urements and model outcomes supports the utility of 
the computational models to quantify therapy and side 
effects during stimulation of a compound nerve. Transla-
tion will likely require clinical data on human physiolog-
ical response to parameter variation for human-specific 
(or patient-specific) model construction due to ana-
tomical and physiological differences in laryngeal mus-
cles and parasympathetic innervation to the heart. Both 
models presented here were specific to mouse physiol-
ogy which differs substantially from humans; resting 
HR in anesthetized mice is roughly 6-fold that in human 
(400 BPM and 60 BPM, respectively). Single cell mod-
els of human SAN pacemaker cells have been validated 
(Fabbri et  al. 2017; Pohl et  al. 2016), but modeling of 
VNS-evoked changes in HR requires parametric studies. 
Muscle fiber composition profoundly influences mus-
cle contraction and fatigue characteristics, and human 
laryngeal muscles have higher proportion of slow-twitch, 
fatigue-resistant fibers than in mice (Hoh 2005). This 
implies the fatigue response observed at the higher fre-
quencies may not apply in humans. While VNS-evoked 
EMG has been collected in humans (Saibene et al. 2017), 
larger parametric tests of VNS-evoked laryngeal muscle 
activation are required for model parameterization and 
validation.

Nerve size and morphology should also be considered 
as the mouse CVN is ~ 150 μm in diameter and monofas-
cicular whereas the human CVN is ~ 2 mm in diameter 
and subdivided into fascicles (Pelot et  al. 2020; Staken-
borg et  al. 2020). This discrepancy influences the nerve 
response to VNS and, in humans, may allow for spatial 
selectivity. While the number of fibers in the human CVN 
is more than 30-fold greater than in the mouse CVN, the 
fiber population proportions are strikingly similar (Stak-
enborg et al. 2020). Taken together, the physiological dif-
ferences between mice and humans could influence our 
finding that 1.2xBCT at 40 Hz increased HR effects over 
laryngeal muscle activation.

For the primary range of stimulation amplitudes (0.8-
1.2xBCT), we theorized the activation of large, myeli-
nated A fibers that mediated laryngeal muscle activity 
was saturated (or close to saturated); conversely, those 
stimulation amplitudes were within the dynamic range 
of the smaller, thinly myelinated preganglionic efferent B 
fibers that mediated bradycardia (Yoo et al. 2016). Subse-
quent experiments with an expanded stimulation ampli-
tude range (0.2-2.0xBCT; BCT = 0.035-0.12 mA) revealed 
an overlap in the dynamic ranges of HR and EMG out-
comes (i.e., activation of A and B fibers). We observed 
slight EMG waveform changes at stimulation amplitudes 
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above 1.2xBCT (Fig. 11B) that may indicate excitation of 
fibers outside of the cuff (i.e., superior laryngeal branch 
of the vagus nerve) via current leakage as observed in 
pigs (Nicolai et al. 2020) and may explain EMGnorm values 
substantially greater than 1 (e.g., LV4 and WI7). Addi-
tionally, the computational model illustrated that the lon-
gitudinal alignment of the nodes of Ranvier of A fibers, 
but not B fibers, strongly affected recruitment order and 
produced overlap between the excitation ranges of A fib-
ers and B fibers, despite the smaller diameters of the B 
fibers.

The FEM and biophysical cable model predicted 
response to stimulation amplitude had good agreement 
for most EMG responses but not HR responses. The 
model captured onset threshold for A fibers (identified 
by EMG) for some animals (e.g., animals AA1 and DP8) 
but underestimated thresholds for others (e.g., animals 
LV4 and AB1). For all animals, the model underesti-
mated onset threshold for B fibers (i.e., BCT, identified 
by HR changes), and the HR dynamic range extended 
beyond the highest B fiber thresholds. Discrepancy 
between modeled and in  vivo nerve responses can be 
attributed to sources of experimental variability and to 
model limitations. High EMG onset and BCT ampli-
tudes may be caused by inter-experimental variability 
such as air bubbles between the electrode contact and 
the nerve. Model threshold accuracy depended on fiber 
type where the same electric field was applied to all bio-
physical cable models, indicating fiber model choice may 
contribute to the difference between B fiber threshold 
and bradycardia onset. Our biophysical cable models 
of B fibers were scaled MRG (McIntyre-Richardson-
Grill) myelinated fiber models (McIntyre et  al. 2002). 
While the MRG model reproduces excitation proper-
ties of A fibers, the suitability to model thinly myelinated 
parasympathetic efferent vagal fibers warrants further 
investigation.

Conclusions
The widespread innervation by the vagus presents 
opportunities to use VNS across a range of applications 
(Guiraud et al. 2016) but also increases the potential for 
myriad off-target effects. Future efforts should focus on 
modeling VNS effects on other organs, CNS nuclei, and 
connected brain regions (Borovikova et al. 2000; Tsaava 
et al. 2020). For example, modeling vagal innervation of 
the spleen would require data of release dynamics of nor-
epinephrine from splenic nerve fibers, the rate of ACh 
production by T-cells, and inhibition of cytokine release 
from muscarinic receptor-expressing macrophages. 
No step of this process has been studied with the tem-
poral fidelity required for a computational model, but 
such a model would allow increased efficacy in VNS for 

treatment of sepsis and autoimmune disorders (Kelly 
et  al. 2022). In conclusion, we demonstrated HR and 
laryngeal muscle activation respond differently to VNS 
parameter selection and accurate computational models 
provide insight into the physiological factors that dictate 
this response.

Abbreviations
ACh	� Acetylcholine
BCT	� Bradycardia threshold
BPM	� Beats per minute
CVN	� Cervical vagus nerve
ECG	� Electrocardiogram
EMG	� Electromyogram
EMGarv	� EMG average rectified value
EMGnorm	� Normalized EMG
FES	� Functional electrical stimulation
FF	� Fast fatigable
Forcenorm	� Normalized force
FR	� Fatigue resistant
HR	� Heart failure
HR	� Heart rate
HRbaseline	� Baseline HR
HRnorm	� Normalized HR
HRstim	� Stimulation HR
ICNS	� Intrinsic cardiac nervous system
IPF	� Intra-pulse frequency
MPR	� Mean pulse rate
MU	� Motor unit
PSO	� Particle swarm optimization
S	� Slow
SS	� Sum of squares
Vm	� Transmembrane voltage
VN	� Vagus nerve
VNS	� Vagus nerve stimulation
VNX	� Vagotomy

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s42234-​023-​00107-4.

Additional file 1: Figure 12. Phenomenological function of success rate 
of vagal action potential to result in post-ganglionic action potential. 
Data (black dots) extracted from (McAllen et al. 2011) (black points) fit to 
exponential curve (red line) where t is the time of a vagal action potential 
and t0 is the time of the previous post-ganglionic action potential in ms. 
Figure 13. Phasic activation of intrinsic cardiac nervous system (ICNS) 
cells. A) Measured excitatory post-synaptic potentials (EPSP, grey bars) and 
overlaid normalized phrenic nerve activity (black line) in a working rat 
heart-brainstem preparation. Figure adapted with permission from (McAl-
len et al. 2011). B) Illustrative raster plot of 100 modeled cycles of ICNS 
firing in 1.3 s epoch. C) Associated cycle-triggered event histogram of data 
from (B) to compare with (A). Figure 14. Validation of implementation of 
acetylcholine (ACh) release using 3 compartment model. Model imple-
mentation (black line) was validated using published data from (Dokos 
et al. 1996a) (red points) for three ACh hydrolysis time constants (rows; kH, 
14 s− 1, 5 s− 1, 30 s− 1) and two vagus nerve stimulation frequencies (10 Hz 
and 100 Hz). Figure 15. Validation of Kharche model of sinoatrial node cell 
firing (Kharche et al. 2011). Model implementation in Python + NEURON 
(black lines) overlaid with data extracted from published figures (dashed 
red lines) and published model in MATLAB from (Morotti et al. 2021). A) 
Transmembrane potential. B-M) Transmembrane ion channel currents 
(I, pA/pF). Differences between data from published figures and model 
implementations in C and L may arise from plotting errors in the original 
publication. N-P) Intracellular ion concentrations. Figure 16. Validation 
of Ding model of muscle force production and fatigue by comparison of 
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model implementation (black lines) to published data (orange circles). 
Model parameters and validation data from (Ding et al. 2003). Simulation 
is of force production of the quadriceps femoris in a healthy individual 
undergoing electrical stimulation (30 Hz, 1.5 s on, 0.5 s off ). A) Force 
production for first 10 s of simulation (left) and after extended period of 
constant frequency stimulation (right). A decrease in evoked force is indic-
ative of muscle fatigue. B-D) Time series of dynamic changes of model 
parameters shows that model implementation and published data agree. 
Figure 17. Range of cost function values (grey area) and lowest cost func-
tion value (black line) for particle swarm optimization (PSO) parameteriza-
tion of computational model of VNS-evoked laryngeal force. A) Five PSO 
runs varied across initial particle positions and training/testing sets. The 
PSO run that produced the model parameters with the lowest combined 
training and testing error is identified by gold area and red line. This run 
did not produce the lowest “testing” Cost Function value. B) Reproduction 
of combination of training and testing sets that produced the optimal 
parameters with varied particle initial positions. Table 4. Normalized heart 
rate (HRnorm) outcomes and post-hoc test comparing means to 1.0xBCT, 
20 Hz. Table 5. Normalized EMG (EMGnorm) and post-hoc test comparing 
means to 1.0xBCT, 20 Hz. Table 6. Effect score outcomes and post-hoc 
test comparing means to 1.0xBCT, 20 Hz. Figure 18. Effect on HRnorm of 
stimulation patterns with 0.5 s stim, 0.5 s pause (50% duty cycle). A) Stimu-
lation patterns. B) HR normalized to pre-stimulation baseline (HRnorm) and 
plotted across mean pulse rate (x-axis) and amplitude (color). Data are 
presented as mean ± SE, n = 8-10/parameter set. Figure 19. Correlation 
between in vivo physiological responses and frequency characteristics of 
random patterns of VNS. A-B) No correlation detected between HR and 
mean inter-pulse frequency (<IPF>, A) or geometric <IPF> (<IPF > geo, B) 
using linear fits. C-D) No correlation detected between EMG and < IPF> 
(C) or < IPF>geo (D). Data points are outcomes from individual experiments 
(n = 10 per MPR value). Coefficient of determination (R2) from linear fits. 
No fit was statistically different from constant values (p > 0.05). Figure 20. 
Comparisons of simulated and in vivo data for HRnorm (A), muscle activa-
tion (B, EMGnorm for in vivo data, Forcenorm for model data), and effect 
score (C). Comparison of modeled and in vivo HRnorm and effect score per-
formed at 0.8xBCT (i), 1.0xBCT (ii), and 1.2xBCT (iii). EMGnorm and Forcenorm 
compared for 1.0xBCT. Data are presented as mean ± SE, n = 8-10/param-
eter set for in vivo data, n = 10 runs per parameter set for computational 
models. Table 7. Error between modeled normalized heart rate (HRnorm, 

model) and in vivo HRnorm,in vivo. Table 8. Error between modeled normal-
ized force (Forcenorm) and in vivo normalized EMG (EMGnorm). Table 9. Error 
between modeled effect score (Effect Scoremodel) and in vivo effect score 
(Effect Scorein vivo). Figure 21. Recruitment curves for modeled A and B 
fibers colored to indicate fiber “jitter” (i.e., longitudinal shift of fibers as a 
proportion of internodal length) overlaid with in vivo EMG (A) and normal-
ized heart rate (B) responses in five animals across stimulation amplitudes. 
Figure 22. EMG waveform depression during high-frequency VNS. A) EMG 
recordings of two trials within the same animal (XD0). EMG waveform 
amplitude stays consistent during 5 Hz stimulation B). Evoked EMG wave-
form amplitude is similar at beginning of the trial (i) and is greatly reduced 
at the end of the trial during 100 Hz stimulation. Figure 23. Comparison 
of dynamic normalized heart rate (HRnorm) values for representative in vivo 
trial (animal HU0, solid line) and simulation (dashed line) during 1.0xBCT, 
100 Hz intra-burst frequency, and 50 MPR stimulation.
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