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Background
Electroencephalography (EEG) is a non-invasive neuro-
imaging technique whereby a cap containing an array of 
electrodes is used to measure the electrical activity of the 
brain. This technique has traditionally been performed in 
laboratory and clinical settings using high-grade equip-
ment with costs on the order of tens-of-thousands of dol-
lars. This equipment is also complex and time-consuming 
to set up, requiring a trained technician to install and per-
form brain imaging studies. Over the past decade, there 
has been an explosion of interest in consumer-grade EEG 
“wearables” that are small, lightweight, battery-operated 
devices with costs typically at least an order of magnitude 
lower (Fig. 1) (Casson 2019). These wearables come in a 
variety of forms, such as headsets and headphones, each 
offering different trade-offs between design (e.g. comfort, 
obtrusiveness) and capabilities (e.g. spatial resolution, 
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Abstract
Collection of electroencephalographic (EEG) data provides an opportunity to non-invasively study human brain 
plasticity, learning and the evolution of various neuropsychiatric disorders. Traditionally, due to sophisticated 
hardware, EEG studies have been largely limited to research centers which restrict both testing contexts and 
repeated longitudinal measures. The emergence of low-cost “wearable” EEG devices now provides the prospect 
of frequent and remote monitoring of the human brain for a variety of physiological and pathological brain 
states. In this manuscript, we survey evidence that EEG wearables provide high-quality data and review various 
software used for remote data collection. We then discuss the growing body of evidence supporting the feasibility 
of remote and longitudinal EEG data collection using wearables including a discussion of potential biomedical 
applications of these protocols. Lastly, we discuss some additional challenges needed for EEG wearable research to 
gain further widespread adoption.
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battery life) (Table  1). The cost effectiveness and porta-
bility of these wearables has created new opportunities 
for EEG to be conducted remotely and longitudinally. 
Current applications of these devices primarily include 

neuromarketing, brain-computer interfaces (BCIs) 
(Fouad 2021; Lavermicocca et al. 2018; Peterson et al. 
2020), and neurofeedback for focus-related activities 
(Introducing the Crown | Neurosity 2022; This ‘Personal 
Brain Computer’ Boosts Productivity By Sensing Your 
Brainwaves And Playing Music From Spotify, 2021) such 
as meditation (Hunkin et al. 2021; Millstine et al. 2019), 
and cognitive load (Huang et al. 2020; Medeiros et al. 
2021). While the literature on these applications is still 
in its infancy, even less is known about the potential for 
EEG wearables to be used in biomedical applications 
such as the remote monitoring and detection of neuro-
logical disease. Here, we discuss significant milestones 
that have been made toward this aim, key pre-requisites 
that still need to be addressed, and propose some long-
term milestones for the field at large.

Requirements
Data quality
To incorporate consumer-grade EEG wearables into 
remote and “operator-free” research protocols, a key 
milestone would be the demonstration of the ability to 

Table 1 Forms of EEG wearables. This table summarizes some 
of the key trade-offs facing the most common forms of EEG 
wearables.
Wearable Category Key Advantages Notable Compromises
Headset Better scalp cover-

age, more emphasis 
on data quality

Challenging for 
participants to setup 
independently

Headband Comfortable, 
design suitable for 
use at-home

Moderate scalp coverage 
(sagittal plane) and less 
emphasis on data quality

Tattoo (adhesive sen-
sor)/Behind the ear 
sensor

Very discrete 
(< 1inch), battery 
life good for passive 
monitoring

Most restricted scalp 
coverage

Headphones/Earbuds Minimally obtrusive, 
design suitable for 
use anywhere

Headphones have mod-
erate scalp coverage 
(coronal plane), earbuds 
have highly limited cov-
erage (around ear)

Fig. 1 Comparison of EEG data collection hardware. (A) shows (left to right): a typical medical EEG setup with a high density of wired electrodes; a 
research-grade wearable cap with wireless electrodes; a research-grade Quick-32r headset; a research-grade EPOC X wearable with 14 electrodes; and a 
Muse 2 consumer-grade wearable with 4 recording electrodes. (B) shows a column of EEG wearables (top to bottom: Muse 2, Neurosity Crown (Introduc-
ing the Crown | Neurosity 2022; This ‘Personal Brain Computer’ Boosts Productivity By Sensing Your Brainwaves And Playing Music From Spotify, 2021), 
EPOC X, Quick-32r). Examples of additional wearables available on the market (not shown above) include: BrainBit(Wearable EEG headband – BrainBit, 
2022) (EEG headband with 4 recording electrodes), Neurosky MindWave (Rieiro et al. 2019) (single electrode EEG wearable), and Neuroon (Liang and 
Chapa Martell 2018) (EEG wearable sleep mask). (C) shows an overview of the: number of sensors, common applications, EEG characteristics, and out-
comes that are commonly related (but not limited) to each grade of EEG hardware
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collect neurocognitively informative data from raw EEG 
recordings in traditional research settings (Fig. 2). Gener-
ally, free-running EEG measurements that do not involve 
external stimuli can be utilized to analyze basal cognitive 
networks by observing the brain’s resting-state activity. 
However, these measurements are typically combined 
with stimuli-paired recordings to facilitate the analysis 
of time-locked data known as event-related potentials 
(ERPs). A commonly used example of ERP analysis is the 
oddball test, which can be administered visually or audi-
torily. During this test, subjects are presented a random 
series of common (frequency: 80–90%) and less common 
(frequency: 10–20%) visual or auditory events. The less 
common events often elicit characteristic ERP waveform 
reflexes from the subject’s unconscious novelty seeking 
system. Averaging these events over multiple presenta-
tions can reveal several characteristic ERPs, including the 
P300 and N200 waveforms, which are positive and nega-
tive spikes in activity occurring approximately 300 and 
200 milliseconds after stimulus presentation, respectively 
(Fig. 3) (Krigolson et al. 2017; Squires et al. 1975). These 
EEG waveforms are dependent on intact levels of cogni-
tion, and alterations in their timing and amplitude are 
often associated with various intra-cranial pathologies, 
including depression, neurodegeneration, and addiction 

(Boutros et al. 1995; D’Arcy et al. 2003; Duncan et al. 
2003; Zhou et al. 2019).

These waveforms were successfully imaged by Krigol-
son et al. in a seminal 2017 paper that demonstrated that 
Muse 2 wearables (~$250 device available on Amazon) 
and a clinical Brain Vision system produce nearly iden-
tical P300 and N200 waveforms in 60 healthy partici-
pants (Krigolson et al. 2017). These findings were further 
supported by the same group in 2021 where significant 
correlations were found between perceived cognitive 
fatigue and the combination of EEG and ERP-derived 
features in 1000 participants (Krigolson et al. 2021). 
While these papers represent a cornerstone achieve-
ment for EEG wearables, both studies still involved the 
presence of trained researchers during data collection. 
In contrast to the serial data collection protocol of the 
2017 Krigolson paper in which the simple Muse devices 
were benchmarked to subsequent higher density EEG 
headset recordings, Kutafina et al. performed simulta-
neous collection. In this study, participant resting state 
activity was measured with both the Emotiv EPOC X 
wearable and a clinical system known as the Brain Quick 
Plus Evolution by Micromed, to assess the simultaneous 
correspondence between their neighboring electrodes 
(Kutafina et al. 2020). This study found a promising 

Fig. 2 Examples of raw EEG data collected from consumer-grade wearables. (A) Raw EEG data collected from a consumer-grade 4-electrode Muse 2 
wearable. X axis represents time and Y axis shows electrode labels. AF and TP are labels for the data collected by anterior-frontal and temporoparietal 
electrodes, respectively. The scale is shown by the red line representing 160 microvolts of amplitude. Large spikes are likely to be a result of ocular and 
muscular artifacts. (B) Raw EEG data collected from a research-grade 14-electrode EPOC X wearable. Time is shown on the X axis and electrode labels on 
the Y axis (international 10–20 system)
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time-domain correlation between the two systems, sug-
gesting that wearables could have the potential to repli-
cate clinical findings. However, no significance values 
were reported on these correlation metrics and there 
are several known limitations of simultaneous record-
ings such as the assumption that neighboring electrodes 
should produce highly correlated waveforms despite their 
slightly different locations on the scalp (Casson 2019). 
Conversely, Badcock et al. were able to validate the Emo-
tiv EPOC by performing simultaneous recordings with a 
research-grade Neuroscan system where they observed 
no significant differences in their auditory ERP ampli-
tudes and latencies in adults (Badcock et al. 2013), and 
very few differences when repeated in children (Badcock 
et al. 2015). By performing simultaneous recordings with 
the EPOC flex saline and the same Neuroscan system, 
the same group also validated its ability to collect reliable 
auditory and visual ERPs, and to detect changes in alpha 
oscillations (Williams et al. 2020). In contrast, Duvinage 
et al. observed significantly worse performance in a P300 
BCI task when using the Emotiv EPOC in comparison to 
a medical device (Duvinage et al. 2013).

However, it is crucial to highlight that these stud-
ies rely on EPOC systems which are considerably more 
complex for untrained users and require expensive 

software subscriptions compared to other brands of 
wearables — both of which present challenges for remote, 
consumer applications. A much simpler (single-elec-
trode) and less-expensive system known as the Neurosky 
MindWave was similarly assessed by Rieiro et al. using 
simultaneous recordings to compare it with a medical-
grade EEG device during resting states and virtual-driv-
ing tasks. Their analysis revealed significant correlations 
in signal quality between the wearable and medical-grade 
systems, such as with blink detection rate and substantial 
signal stability despite having increased noise. Although, 
the use of a single electrode in the Neurosky MindWave 
limits its spatial resolution and ability to address more 
heterogeneous and asymmetric brain states and lesions 
(Rieiro et al. 2019). Comparative studies between EEG 
wearables, whether conducted sequentially or simul-
taneously, are limited because of the challenges in two 
devices collecting data concurrently from the same loca-
tion. In the Muse 2 study (Krigolson et al. 2017), attempts 
to detect canonical ERP patterns meant that a ground 
truth measurement was not strictly required. However, 
with simultaneous recordings such as in the later EPOC 
X study by Kutafina et al. (2020), there was an a priori 
assumption that neighboring electrodes should have 
highly similar data (Kutafina et al. 2020). Despite this 

Fig. 3 Example of a P300 event-related potential collected from an oddball task. The X axis shows the time in seconds with 0 s coinciding with stimuli 
presentation (dotted line). Y axis shows the EEG signal amplitude in microvolts. Blue and orange lines represent an average of EEG waves evoked by rarely 
occurring target stimuli (e.g. visual or auditory cue) and an average of EEG waves evoked by commonly occurring standard stimuli, respectively. Observ-
ing differences between the target and standard data reveals two characteristic waveforms, a positive spike at 300 ms (P300) preceded by a negative 
spike at approximately 200 ms (N200)
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limitation, performing simultaneous recordings can still 
provide the ability to discern whether observed differ-
ences are attributable to variations between the systems 
or disparities in the brain’s state at different time points. 
More specifically, it eliminates confounding factors such 
as varying levels of fatigue or differences in habituation 
from exposure to task-related stimuli (Badcock et al. 
2013).

Although many of these studies have focused on repro-
ducing electrophysiological signals from well-character-
ized tasks, such as validating ERPs or resting state data, 
it is also important to further assess EEG wearable data 
quality for biomedical applications. For instance, validat-
ing wearable EEG data quality for sleep can help augment 
the accuracy of detecting sleep disorders and evaluat-
ing the effectiveness of treatments remotely. In pursu-
ing this, one study by Nakamura et al. performed in-lab 
simultaneous sleep recordings with a custom single-ear 
EEG and a standard clinical scalp EEG and found sub-
stantial agreements when manually scoring and compar-
ing their hypnograms (Nakamura et al. 2017). Although 
this supports that accurate and remote EEG recordings 
with a minimal number of electrodes can be used to 
feasibly track sleep parameters, further studies on the 
data quality of commercially available wearables with a 
higher number of electrodes are required which would 
enhance the capability for more comprehensive monitor-
ing of brain activity. In 2020, the Dreem EEG consumer 
headband with 5 electrodes was tested overnight at a 
sleep laboratory against simultaneously collected stan-
dard clinical polysomnography which revealed low mean 
percent errors between their measurements of relative 
spectral power. Moreover, they found strong agreements 
in their ability to detect heart rate, breathing frequency, 
and respiratory rate variability, as well as in comparisons 
between the headband’s automatic deep-learning sleep 
staging classifications to manual classifications con-
ducted by sleep experts on the polysomnograms (Arnal 
et al. 2020). Overall, the validation of wearables for col-
lecting general EEG data in sleep is promising although 
further studies with a greater focus on monitoring sleep 
disorders are required.

Currently, the pathology most widely studied using 
EEG wearables has been epilepsy due to the fact that tra-
ditional EEG studies are well-established for this disease. 
It has been found that EEG wearables have sufficient 
data quality to resolve the features of epilepsy for seizure 
detection (Baum et al. 2022; Glaba et al. 2021; Mckenzie 
et al. 2017; Neumann et al. 2019). For example, a 2020 
in-lab study compared a 2-channel wearable known as 
Neury with simultaneously collected medical-grade EEG 
in patients with the epileptic symptom of continuous 
spike-waves during sleep. Their analysis revealed robust 
associations between the two systems’ quantitative spike 

measurements, and side-by-side comparisons between 
device EEG background rhythms, spike activities, and 
active ictal recordings also demonstrated strong qualita-
tive concordances (Carvalho et al. 2020). Although non-
EEG wearables have displayed considerable potential for 
seizure prediction (Karoly et al. 2020; Stirling et al. 2021a, 
b), there is only one pilot study using wearable EEG 
information where various wearables were combined into 
a multi-modal analysis (Zambrana-Vinaroz et al. 2022). 
Additional research is needed to determine if wearable 
EEG data contains more nuanced signals like subtle epi-
leptic activity and signatures of progression, which could 
potentially extend wearables’ capabilities to other neuro-
logical diseases. For example, most patients with brain 
tumors exhibit complex but informative EEG signatures 
at the time of diagnosis (Small et al. 1961). Therefore, 
it would be valuable to investigate if wearable devices 
can detect these subtle variations as well as monitoring 
for any changes in these patterns over time, particularly 
in the early stages of disease before symptoms become 
apparent (Samuel et al. 2021).

Besides comparing data similarity to higher-grade 
devices, it is essential to consider the practical design ele-
ments of EEG wearables as they bear important impli-
cations for at-home usability for patients. To elucidate 
these differences in design between devices, Radüntz et 
al. compared seven different mobile EEG systems with 
respect to ease-of-use, wearing comfort, visual appear-
ance, setup time, and maximum possible wearing dura-
tion. They found large differences in usability between 
wet and dry electrodes, which can substantially impact 
adherence to daily use primarily due to the inconvenience 
of setup (Radüntz and Meffert 2019). Previous studies 
have also shown that dry electrodes are more likely to 
provide weaker signals in the short-term but are more 
stable over longer durations compared to wet electrodes 
which rely on gradually dissipating gels and saline solu-
tions (Hinrichs et al. 2020). This suggests that for remote 
studies, researchers need to carefully consider the trade-
offs between device usability, comfort, and the expected 
signal quality.

Ultimately, the culmination of these studies has yielded 
promising protocols for gathering neurocognitively infor-
mative EEG data using consumer-grade wearables. How-
ever, it is crucial to recognize that while this milestone 
is significant, it differs from the objective of remotely 
acquiring data from patients’ homes, which necessitates 
further formal testing to ensure reliability and validity.

Appropriate software
One of the most significant challenges in remote data col-
lection, even with the plethora of suitable EEG devices, 
is the need for specialized software to synchronize the 
wearable to a computer collecting data while guiding 
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subjects through neuro-cognitive tasks. For some study 
designs where macroscopic frequency-domain features 
are used, such as in many meditation studies, only free-
running data collection is required. However, for study 
designs requiring time-domain responses to stimuli, such 
as ERPs, collecting data remotely is a considerable chal-
lenge. To address this challenge, software that can accu-
rately and precisely timestamp EEG data in real time in 
relation to stimuli is required (Williams et al. 2021), while 
also maintaining an easy-to-use interface to facilitate 
independent data collection from patients at home.

Several investigators have developed software for 
remote data collection. For example, Li et al. created an 
EEG acquisition system that allows a Raspberry Pi chip 
to connect EEG electrodes to a computer using Python 

(Li et al. 2018). While they managed to produce an effec-
tive low-cost system that achieved high signal quality, 
their hardware configuration included wires and silicon 
chips that are likely too complex for the primary subjects 
of clinical studies who may have low technological flu-
ency (i.e. older subjects suffering from neurodegenera-
tion). To alleviate the dependency on wires, Memon et al. 
proposed an acquisition system for a 4-channel configu-
ration of the OpenBCI wireless EEG system for brain-
computer interface applications (Memon et al. 2018). 
While succeeding with a wireless system is a considerable 
milestone, the numerous components and attachments 
required to setup this device could still be too complex 
for many patient populations and may only be practical 
and appropriate for lab environments. Ideal software sys-
tems should be compatible with commercially available 
EEG wearables since those devices have been created 
with careful consideration for design and usability. Pro-
spectively, these systems should be sufficiently modular 
to integrate new hardware as they are released, and pub-
licly available for external validation and use.

Lastly, the restricted access of proprietary program-
ming languages such as MATLAB used by previous 
groups presents a barrier to public use and researchers 
who are looking to replicate data (Krigolson et al. 2017, 
2021; Kutafina et al. 2020). For example, the collection 
of proprietary metrics rather than raw EEG data can 
reduce transparency, reproducibility across devices and 
limits opportunities for analyses of other widely studied 
phenomena such as ERPs, or changes in spectrographic 
activity (Fig.  4). However, this can be resolved with 
open-source programming languages such as Python, 
or EEGLAB (Cao et al. 2019) which are likely to grow in 
popularity as a result. For instance, Cherep et al. (2019) 
created custom Python software to collect data using a 
nine-electrode commercial EEG wearable (Cherep et al. 
2022). Likewise, our lab is developing a Python-based 
software prototype to address many of the aforemen-
tioned limitations regarding device modularity, pub-
lic-availability, and ease-of-use. Another issue we have 
encountered is the dropping of connections, where the 
device stochastically disconnects from the system, thus, 
terminating data collection. Similarly, while our efforts 
centered on ensuring that our software is compatible 
with various devices, such as the Muse 2 and Muse S, 
certain systems like the EPOC X require a third-party 
subscription software to facilitate integration, resulting 
in increased complexity and reduced shareability of the 
workflow. This implies that the level of accessibility for 
users may vary depending on the specific hardware, as 
it will depend on the availability of open-source compat-
ibility layers between Python and the hardware. Careful 
selection and promotion of open-source software may 

Fig. 4 Spectrogram data collected from an EEG consumer wearable. This 
shows spectrogram data from 2 electrodes of a Muse 2 wearable connect-
ed to the Mind Monitor smartphone app (Mind Monitor 2022). Frequen-
cies of EEG waves are shown on the horizontal axis. Time is on the vertical 
axis starting after zero seconds from the top. Power of the EEG signal for 
each frequency is encoded by color. Note that color bars are not avail-
able in Mind Monitor software so the spectrogram should be interpreted 
qualitatively. Colors are from high to low power in the following order: red, 
orange, yellow, green, cyan, blue. A spike in power can be observed earlier 
in the recording from approximately 0–24 Hz, likely due to an ocular or 
muscular artifact
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therefore be critical to allow studies to be easily repro-
duced and extended.

Promises
Remote acquisition
EEG wearables offer a significant advantage in that they 
have the potential to collect data remotely. This feature 
enables the collection of large datasets in parallel, outside 
of highly controlled environments that may also intro-
duce confounding variables. Many examples of progress 
towards at-home data collection have been championed 
by sleep studies. One of the first examples was Liang et 
al. which used commercial wearables at home to compare 
EEG to the wristwatch wearable “Fitbit” for tracking sleep 
onset and duration (Liang and Chapa Martell 2018). They 
found that the Neuroon (an EEG wearable sleep mask) 
was able to measure more sleep parameters than the Fit-
bit as confirmed by a 2-channel clinical sleep measure-
ment system known as the Sleep Scope, which served as 
ground truth. An example of a more technically focused 
study was Debellemaniere et al. which successfully col-
lected ERPs at home as part of an interventional sleep 
study (Debellemaniere et al. 2018). This group was able 
to modulate ERPs in response to an auditory stimulus 
and achieved statistically more slow-wave sleep in com-
parison to a sham treatment. Other successful remote 
sleep studies have been conducted by several groups: 
Lunsford-Avery et al. validated the ability to remotely 
record sleep activity using a wearable EEG (Zmachine 
Insight + device - General Sleep Corporation) and used 
correlation to wrist-worn actigraphy as a metric for 
success (Lunsford-Avery et al. 2020). Rocknathan et al. 
performed a similar protocol by comparing an exposed-
wire EEG system with wristband actigraphy devices and 
found that EEG parameters better correlated with sub-
jective reports of sleep quality but failed to find any reli-
able effect of a white noise intervention due to issues with 
data collection (Rocknathan et al. 2018).

Overall, sleep studies would highly benefit from col-
lecting data at home since sleeping in an unfamiliar 
environment (i.e. the sleep lab) is a known source of con-
founding to many features of sleep (Byun et al. 2019). 
Other researchers have also deployed EEG wearables 
remotely to collect awake-state neurocognitive informa-
tion. For example, Barbey et al. (2022) used a research-
grade device to demonstrate that EEG P300s can be 
collected at home over a span of several weeks (Barbey et 
al. 2022). They achieved a canonical P300 in younger sub-
jects but only an ambiguous waveform for elderly sub-
jects which suggests that technological literacy may be 
a confounding variable for these remote studies. While 
this result is a promising milestone for remote data col-
lection, the authors did not include objective analyses 
of these waveforms to demonstrate significance. Using 

the consumer-grade Muse 2, Hunkin et al. was able to 
successfully collect remote EEG data from over 20 par-
ticipants to study psychological trait-mindfulness. They 
found significant correlations between proprietary Muse 
software metrics, and both subjective and objective mea-
sures of focus such as psychometric questionnaires and 
the breath-counting task, respectively (Hunkin et al. 
2021).

To date, our lab’s experiences with remote data collec-
tion have revealed additional challenges that may hinder 
the participants’ abilities to reliably collect data. Suc-
cessful collection requires an understanding of how to 
use the data acquisition software installed on a laptop in 
tandem with the EEG wearable (Fig. 5). Although partici-
pants receive an initial demonstration in the laboratory 
and an instruction document to take home, those who 
suffer from diseases affecting mobility and/or cognition 
or who are less technologically literate are more likely to 
encounter difficulties in completing the remote protocol 
independently. In these situations, an assistant such as a 
caregiver or family member would be required to help 
guide the participant. Thus, an overall priority should be 
for simple and intuitive software interfaces and supple-
mentary instructions to augment its accessibility.

Longitudinal acquisition
EEG wearables offer the advantage of expediting the col-
lection of EEG data repeatedly and over a longer duration 
with fewer practical limitations. Traditional EEG meth-
ods necessitate a skilled technician to operate the imag-
ing system, multiple lab visits which can be inconvenient, 
and high hardware and operation costs that are often too 
prohibitive to conduct multiple data collection sessions. 
Due to the ease-of-use, portability, and affordability of 
consumer-grade wearables, subjects could theoretically 
collect daily data to explore how EEG signatures evolve 
across different routine activities, occupational settings 
and time. A prototypical example of how longitudinal 
data is traditionally accomplished is provided by Saggar 
et al. In this study, EEG data was collected from three 
timepoints (pre, during, and post) across a three-month 
meditation retreat. This allowed them to demonstrate 
that an intensive meditation regimen had reproduc-
ible effects to individuals’ alpha frequency (Saggar et 
al. 2012). Another similar example is Lanzone J. et al., 
where a test-retest study design was performed to show 
that EEG could be used to track longitudinal changes in 
stroke recovery, with two time points, two months apart 
(Lanzone et al. 2022). While studies like these can pro-
vide valuable information about changes in brain states, 
the temporal resolution is limited, which does not allow 
for making robust claims about the dynamic evolution 
of EEG signatures. With more frequent EEG collection 
(weekly, bidaily, or daily) researchers could gain deeper 



Page 8 of 11Sugden et al. Bioelectronic Medicine            (2023) 9:12 

insights into various conditions, including disease patho-
genesis, or how meditation and other neurocognitive 
exercises affect the brain over time. As such, this is likely 
going to be one of the major differentiating features of 
wearable EEG devices.

Biomedical Application
Epilepsy From a health science perspective, the cardinal 
goal of wearable EEG research is to prove the biomedical 
utility of its collected data. Currently, many wearable EEG 

studies have focused on epilepsy as a model disease due to 
its well-defined EEG characterization and high signal-to-
noise ratio (Brinkmann et al. 2021; Rosenow et al. 2015). 
For example, McKenzie et al. performed one of the first 
studies on biomedical applications using EEG wearables 
and observed some potential for a smartphone-linked 
EEG headset to monitor epilepsy compared to standard 
EEG. However, this study was simply a proof-of-concept 
and thus did not assess the remote or longitudinal objec-
tives of wearable EEG research (Mckenzie et al. 2017). 
Neumann et al. performed a comparison and determined 
that although their portable Fourier One EEG system gen-
erates lower quality signals than clinical data, diagnostic 
ability in patients with epileptic symptoms was not sig-
nificantly reduced (Neumann et al. 2019). The same group 
further confirmed the feasibility of collecting data with 
this portable EEG system at home (Baum et al. 2022). The 
potential for biomedical applications with EEG wearables 
was further supported by Glaba et al. which demonstrated 
that these portable devices can effectively correct for 
motion artifacts (Glaba et al. 2021). This work resulted in 
improved real-time seizure detection algorithms, thereby 
bringing epilepsy detection by EEG wearables one step 
closer to real-world implementation.

The motivation for the remote monitoring of epilepsy is 
strong since it can be difficult to detect if a subject does 
not express any symptoms during their relatively short 
clinical assessments. Furthermore, having a device that 
can detect seizures and relay this information to a smart-
phone that could then alert consented family members 
of distress has significant implications. However, despite 
the promising potential for remote epilepsy monitoring, 
this condition involves a macroscopic electrical discharge 
that should be easily detectable by any electrode system 
such as EEG. On the other hand, the application of wear-
able EEG devices to other diseases may require the detec-
tion of more subtle electrophysiological patterns and may 
require more sophisticated hardware, which may never 
achieve the same level of spatial and temporal precision 
as research-grade devices.

In support of broader applications, there are many 
other neurological diseases that have been recently stud-
ied using EEG wearables. For example, Mercado-Aguirre 
et al.’s study with the consumer-grade Emotiv EPOC dem-
onstrated its ability to detect literature-supported differ-
ences in ERP profiles between healthy children and those 
with ADHD (Mercado-Aguirre et al. 2019). Furthermore, 
Cao et al. used wearables to successfully identify changes 
in EEG signatures in response to ketamine treatment for 
patients with depression, although in a non-remote and 
non-longitudinal setting (Cao et al. 2019). Additionally, 
Lin et al. developed a custom-made 8-channel EEG head-
set that found in-lab differences in ERP characteristics 
between Parkinson’s disease patients with and without 

Fig. 5 Methodology for remote data collection with consumer EEG wear-
ables. A potential workflow for a remote data collection protocol. First, a 
laptop or other smart device with software (Ai) that can connect to and 
receive data from an EEG wearable (Aii) is required. A participant would 
then attend an initial in-lab demonstration on how to navigate the soft-
ware to simultaneously perform EEG recordings with cognitive tests (B) 
of interest. The devices are then taken home for remote longitudinal data 
collection (C) with sessions as frequent as for example, weekly, bidaily, or 
even daily. Once collection is completed, devices are returned to the lab 
for analyses of EEG features, such as event-related potentials or changes in 
power bands and spectrographic data (D). Remote transfer of data is also 
a potential additional feature with increased data encryption and security 
measures
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impulse control disorders (Lin et al. 2021). Lastly, a study 
by Ferster et al. developed an algorithm that can more 
accurately track phase changes in real time to maximize 
clinically beneficial in-phase stimulation of slow waves 
during deep sleep in older adults or patients with neuro-
degenerative diseases (Ferster et al. 2022).

The successful application of EEG wearables in vari-
ous neurological diseases is a promising sign that they 
could offer biomedical insights. So far, these results have 
been context-specific and were designed to perform an 
analogous function to replace more expensive EEG sys-
tems. The next milestone will be to determine whether 
EEG wearables can offer something completely novel to 
the field of EEG. For example, it will be of interest to see 
if generating large longitudinal EEG datasets can iden-
tify longitudinal biomarkers of either disease progres-
sion or treatment response, which would be logistically 
challenging with more traditional approaches. To inves-
tigate such a research question, the unique advantages 
of EEG wearables for performing large-scale data col-
lection over extended periods and for large sample sizes 
will be required. If wearables prove to be biomedically 
informative, they could eventually be utilized in a simi-
lar manner as Holter monitors for heart monitoring. A 
patient could then be given an EEG wearable to perform 
monitoring at home and their physicians could analyze 
the collected data to make informed clinical decisions. If 
accurate biomarkers are identified, this could potentially 
be valuable for screening for neurological diseases at an 
early stage or tracking disease responses to treatments or 
interventions.

Remaining Challenges
Multimodal wearable data
While EEG wearables are unlikely to ever provide the 
same data quality as higher-grade systems, there are 
opportunities to augment their data with other forms of 
wearables such as wrist-worn, finger ring, or clothing-
based devices. These other wearables can provide com-
plimentary information such as movement, heart rate, 
and respiration which could improve our ability to under-
stand subjects’ physiological states (Zambrana-Vinaroz et 
al. 2022). Before this concept can be used for any prac-
tical applications, several requirements need to be met. 
For example, the appropriate data collection software(s) 
would have to be able to precisely integrate incoming 
data from different sources (which potentially have dif-
ferent sampling rates or transmission delays).

Optimization
While there is a growing body of evidence that EEG 
wearables can provide insightful data, we note the large 
disparities in usability between wearable systems. Each 
wearable system faces a trade-off between capability, 

ease-of-use, and comfort. For example, our lab has found 
that while the Neurosity Crown covers all lobes of the 
brain, it suffers from a short battery life. In contrast, our 
participants report that Muse systems are lightweight 
and easy-to-use, but they only capture data from a two-
dimensional sagittal plane. One exciting avenue for future 
work will therefore be to integrate reports of user feed-
back into the development of new EEG wearables that 
optimize design elements (usability, comfort, and style) 
against technological considerations like electrode count, 
battery life, etc. We anticipate that, as more research 
becomes available, future headsets will be increasingly 
specialized to perform specific tasks by placing elec-
trodes optimally to detect a brain state such as pathol-
ogy. By determining the optimal locations, developers 
can use the minimum required electrodes for successful 
detection to preserve the streamlined design. This would 
also allow them to include tailored design considerations 
for clinical populations that may face challenges such as 
inflammation from surgery.

Conclusion
Wearable EEG devices provide a unique opportunity 
to scale and transition non-invasive brain monitoring 
beyond the limited number of available medical centers. 
This is analogous to the recent breakthrough devices 
such as the Apple Watch and Fitbit that have enabled 
heart rate monitoring and arrhythmia detection for the 
general public (Perez et al. 2019). The ability to carry out 
EEG data collection remotely offers many advantages 
including cost-effectiveness, increased accessibility for 
population and at-risk screening, and the novel ability to 
study longitudinal changes across various physiological 
and pathological states. Despite this promise, there are 
still many uncertainties that need to be resolved includ-
ing potential improvements in signal acquisition while 
balancing independent operation and costs. The action-
ability of these changes once identified would also need 
to show merit.
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