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Abstract 

Background Neurostimulation is an effective therapy for treating and management of refractory chronic pain. 
However, the complex nature of pain and infrequent in-clinic visits, determining subject’s long-term response to the 
therapy remains difficult. Frequent measurement of pain in this population can help with early diagnosis, disease 
progression monitoring, and evaluating long-term therapeutic efficacy. This paper compares the utilization of the 
common subjective patient-reported outcomes with objective measures captured through a wearable device for 
predicting the response to neurostimulation therapy.

Method Data is from the ongoing international prospective post-market REALITY clinical study, which collects long-
term patient-reported outcomes from 557 subjects implanted by Spinal Cord Stimulator (SCS) or Dorsal Root Ganglia 
(DRG) neurostimulators. The REALITY sub-study was designed for collecting additional wearables data on a subset of 
20 participants implanted with SCS devices for up to six months post implantation. We first implemented a combi-
nation of dimensionality reduction algorithms and correlation analyses to explore the mathematical relationships 
between objective wearable data and subjective patient-reported outcomes. We then developed machine learning 
models to predict therapy outcome based on the subject’s response to the numerical rating scale (NRS) or patient 
global impression of change (PGIC).

Results Principal component analysis showed that psychological aspects of pain were associated with heart rate 
variability, while movement-related measures were strongly associated with patient-reported outcomes related to 
physical function and social role participation. Our machine learning models using objective wearable data predicted 
PGIC and NRS outcomes with high accuracy without subjective data. The prediction accuracy was higher for PGIC 
compared with the NRS using subjective-only measures primarily driven by the patient satisfaction feature. Similarly, 
the PGIC questions reflect an overall change since the study onset and could be a better predictor of long-term neu-
rostimulation therapy outcome.

Conclusions The significance of this study is to introduce a novel use of wearable data collected from a subset of 
patients to capture multi-dimensional aspects of pain and compare the prediction power with the subjective data 
from a larger data set. The discovery of pain digital biomarkers could result in a better understanding of the patient’s 
response to therapy and their general well-being.
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Background
Chronic pain is a debilitating condition that affects 
patients’ quality of life by limiting social interaction, 
physical activity, work participation, and sleep qual-
ity as well as increasing the risk of fatigue, anxiety, and 
depression (Cohen et al. 2021; Crofford 2015). It is esti-
mated that more than 50.2 million (or one in five) adults 
in the US experience chronic pain (Steingrímsdóttir et al. 
2017). The social and individual burdens associated with 
this condition have escalated worldwide. Treatment 
options for chronic pain are varied, depending not only 
on the underlying etiology of pain, but also on factors 
such as insurance access, geographic location, and the 
type of physician a patient may see. Traditional treat-
ment options range from conservative options such as 
patient education and reassurance, physical therapy, and 
chiropractic care, to intermediate and minimally invasive 
options such as pharmacologic agents, steroid injections, 
ablation, and neurostimulation), and to invasive options 
such as spine surgery.

Spinal Cord Stimulation (SCS) is a recommended 
intervention for the management of refractory chronic 
pain syndromes (Deer et  al. n.d; Taylor et  al. 2006; Vos 
et al. 2014; Stelter et al. 2021; Kumar et al. 2007). One’s 
response to SCS therapy may differ from another’s over 
time and maintaining optimal response to the therapy 
often demands interactive adjustment of treatment 
parameters; thus, appropriate patient selection and long-
term monitoring of symptoms are crucial in optimiz-
ing the outcomes of SCS therapy (Goudman et al. 2022; 
Goudman et al. 2021a).

Accurate pain measurement in long-term follow up 
facilitates early diagnosis, disease progression moni-
toring, and therapeutic efficacy evaluation; thus, it is a 
vital component in managing chronic pain conditions. 
While clinical trials have typically relied on unidi-
mensional metrics such as the Numerical Rating Scale 
(NRS) and Visual Analog Scale (VAS), the complexity 
of chronic pain demands the use of more robust, mul-
tidimensional tools to better measure pain and assess 
outcomes (Dworkin et al. 2005; Levy et al. 2023). More 
comprehensive patient-reported outcome measures 
(PROMs) include the PROMIS-29 (Cella et  al. 2019; 
Hays et  al. 2018), Pain Catastrophizing Scale (PCS) 
(Osman et  al. 2000), Oswestry Disability Index (ODI) 
(Fairbank and Pynsent 2000), and Patient Global 
Impression of Change (PGIC) (Salaffi et  al. 2004); 
these metrics are now routinely used to provide deeper 

insight into pain and the different areas that pain can 
impact function, mental health, and quality of life (Katz 
et al. 2021).

Although collecting of PROMs in person during a 
clinic visit is usually considered the gold standard in 
assessing pain (Dworkin et  al. 2005), frequent collec-
tion of these PROMs is cumbersome for both patients 
and clinicians. In addition, the infrequency of clinic 
visits can make it difficult to track pain progression 
and fluctuations over time desirable for optimal treat-
ment of chronic pain. There is also a chance of bias that 
impacts both the accurate assessment and treatment 
of chronic pain (Hoffman et  al. 2016; Anderson et  al. 
2009). One potential solution to these challenges is the 
use of remote monitoring technologies, such as mobile 
apps and wearable devices, to collect PROMs and other 
relevant data from patients in real time (Rejula et  al. 
2021; Pathak et al. 2021). This approach has the poten-
tial to provide more frequent and objective assessments 
of pain, as well as other related factors such as physical 
activity and sleep quality, which can inform treatment 
decisions and help identify early warning signs of pain 
exacerbation.

Advances in wearable technology have enabled 
the measurement of “digital biomarkers” including 
movement and physical activity (Caramia et  al. 2018; 
Maceira-Elvira et  al. 2019; Yan et  al. 2017; Motl et  al. 
2009; Smuck et  al. 2017), gait and posture (Caramia 
et  al. 2018; Maceira-Elvira et  al. 2019; Yan et  al. 2017; 
Motl et  al. 2009; Smuck et  al. 2017), neuromuscular 
and physiological signals (Kushioka et  al. 2022), sleep 
(Goudman et al. 2021a; Pathak et  al. 2021; Rodríguez-
Fernández et al. 2021; Avila et al. 2021; Xia et al. 2019), 
and behavioral data (Chen et  al. 2021; Naeini et  al. 
2019). Such markers are best collected in real time, 
outside of the physical confines of a medical office set-
ting, and the use of wearable devices now makes this 
possible.

Despite recent research highlighting the importance 
of using machine learning techniques in pain research, 
previous works have focused on correlating and moni-
toring symptoms and side effects of pain with digital 
biomarkers, and not necessarily predicting the subject’s 
reported outcomes including response to SCS therapy 
(Smuck et al. 2017; Avila et al. 2021; Koenig et al. 2016a; 
Tomkins-Lane et al. 2022; Costa et al. 2022).

In this paper, we first utilized dimensionality reduc-
tion algorithm to evaluate the similarities between 
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data obtained objectively through wearables and phone 
applications and subjective patient-reported out-
comes. We then applied machine learning techniques 
to predict SCS therapy outcome evaluated by subject’s 
response to NRS or PGIC using both subjective ques-
tionnaires and objective measures using wearables. We 
hypothesized that many physical and psychological 
aspects of chronic pain or its effects on patients can be 
objectively measured and utilized to accurately predict 
SCS therapy outcomes.

Method
Data for our analysis were extracted from the ongoing 
prospective, multicenter, international REALITY (Long-
Term Real-World Outcomes Study on Patients Implanted 
with a Neurostimulator) study (NCT03876054). Before 
starting the study, Institutional Review Board or Eth-
ics Committee approval was received at each site, and 
all patients were given written informed consent. The 
devices used in this study are FDA-approved or approved 
by a corresponding national agency for this indication. 
Study visits occur at enrollment, at baseline, peri-oper-
atively, and at six months, one year, and yearly there-
after until the subject has been followed for five years 
post-implantation.

The eligibility criteria included a baseline pain score ≥ 6 
on the 0–10 NRS and scheduled for implantation of an 
Abbott SCS or dorsal root ganglion (DRG) stimulation 
neurostimulation system (Abbott Neuromodulation, 
Austin, Texas) within 60 days of the baseline visit. To rep-
licate the range of complex patients seen in daily medical 
practice, the REALITY study inclusion criteria was devel-
oped with few restrictions on the pain indication as per-
mitted by regulatory guidelines in each geographical area 
and according to standard clinical practice.

Demographics, pain etiology, and chronic pain his-
tory were collected at baseline. Various patient-reported 
outcome measures, as described in detail below, were 
collected at baseline and each follow-up study visit in 
accordance with the IMMPACT recommendations 
(Dworkin et  al. 2005) to capture the effects of therapy 
on subjects’ pain, function, disability, and mental health. 
Pain intensity was measured using NRS, where 0 is no 
pain and 10 is the worst pain imaginable (Farrar et  al. 
2001). Physical function and pain related disability were 
measured with the 10-item Oswestry Disability Index 
(ODI) (Fairbank and Pynsent 2000). Each section in the 
scale covers a different domain (pain intensity, personal 
care, lifting, walking, sitting, standing, sleeping, sex life, 
social life, and traveling). Emotional distress was assessed 
with the 13-item PCS which yields a total score and three 
subscale scores assessing rumination, magnification, 
and helplessness (Sullivan 1995). PROMIS-29 was used 

to assess the following nine domains: Physical Function 
and Ability to Participate in Social Roles and Activities, 
as well as the seven days average of subject’s Depression, 
Anxiety, Fatigue, Sleep Disturbance, Pain Interference, 
and Pain Intensity (Cella et  al. 2010; Cella et  al. 2007). 
Other standardized metrics such PGIC (Geisser et  al. 
2010), a 7-question scale to assess patient global health 
and a subject’s impression of clinical change, were also 
collected at each follow-up. Subjects were also asked 
to report their satisfaction with pain relief provided by 
the therapy on a five-scale rating of very satisfied, satis-
fied, neither satisfied nor dissatisfied, dissatisfied, very 
dissatisfied.

REALITY Wearable Sub Study
The REALITY wearable sub-study was devised to 
investigate the feasibility of using smartwatch record-
ings to measure physiological and behavioral markers 
and to characterize patient experience from baseline to 
6  months post-implantation in a subgroup of patients 
with access to a smartwatch. The sub-study visits 
occurred at enrollment, baseline, and at three- and six-
months post-implantation. All sub-study participants 
were given an Apple® Watch (Series 3) at enrollment 
and were instructed to enter NRS scores on a custom 
watch application daily from baseline to six months after 
implantation. In addition to the NRS scores, the watch 
application passively collected several HealthKit metrics 
for activity, behavior, and cardiac measures, such as step 
count, stand time, distance walked/run, heart rate, and 
heart rate variability. Participants were asked to start the 
watch application at least once a day and the NRS data 
was sent to secure cloud storage after they selected their 
current pain level from 0 (no pain) to 10 (the worst pain 
imaginable). The REALITY iOS-based custom applica-
tion was provided on the given iPhones to participants 
to collect behavioral data, PROMs, such as PROMIS-29, 
ODI, PCS, and PHQ-9 on a regular basis (at least 3 times 
pre-implant, and monthly post-implant). In addition, 
PGIC was collected at least monthly post-implant. Many 
subjects reported PGIC multiple times a month. The 
REALITY iPhone custom application is a companion to 
the watch application and when installed on the iPhone, 
it automatically initiates the installation of the watch 
application on the paired Apple® Watch.

Data preprocessing and missing data
The statistical features of the daily windowed data were 
included in the feature set, such as maximum, minimum, 
sum, mean, standard deviation, and 25, 75, and 90 per-
centiles of data. To balance weights and missing data for 
low-resolution wearable features in our analyses, we used 
daily window averaging for data points with the same 
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pain level. However, due to a high number of missing and 
low-resolution sleep data acquired through the smart-
watch HealthKit app Series 3, this measure was excluded 
from further analysis. In addition, heart rate variabil-
ity (HRV) calculated through the Apple® HealthKit had 
missing data points and inter-beat interval was not acces-
sible, and therefore heart rate values were used to esti-
mate the time interval for calculating HRV using three 
different methods: root mean square of successive inter-
beat intervals of heartbeat differences (RMSSD), stand-
ard deviation of the average inter-beat intervals without 
artifacts (NN intervals) for each 5 min-period over a 24-h 
recording of HRV (SDANN), and the average of standard 
deviations of all the NN intervals for each 5 min-period 
over a 24-h recording of HRV (SDNNI) (Shaffer and 
Ginsberg 2017). To handle missing data for the subjective 
data from PROs, we used the average score across all data 
points within the same NRS and PGIC level depends on 
the output of the machine learning model meaning PGIC 
was used to do the imputation of missing PROs for NRS 
modeling and vice versa NRS for PGIC modeling.

Dimensionality reduction
Principal component analysis (PCA) was used to under-
stand the similarities across many subjective measures 
in both REALITY main study and sub study. The same 
analysis was performed to compare the subjective and 
wearable objective measures (WOMs) collected for all 
REALITY sub-study patients. PCA is a statistical method 
used for large datasets to reduce the dimensionality of 
the data while increasing the interpretability with mini-
mal data loss (Abdi and Williams 2010). PROMs from 
all scales and WOMs were treated as unique entries. 
Data points from various scales were standardized using 
the z-score (standard score) prior to this analysis. The 
z-score describes the fractional distance between a data 
point and the population mean in terms of standard devi-
ation units. Similarities between the clusters of PROMs 
and WOMs were compared.

Predictive models using machine learning
Machine learning models were developed from base-
line demographic and medical history, wearable objec-
tive measurements, and subjective PROMs collected 
as described previously. A balanced number of training 
sets for each class of different output variables was con-
sidered. Subject response to SCS therapy was evaluated 
based on how various objective and subjective input 
variables to the machine learning model can predict pain 
and PGIC categories. For prediction of PGIC, scores of 
PGIC were categorized into three responder groups; 1) 
subjects who selected “No change (or the condition has 
gotten worse)”, “Almost the same, or hardly any change 

at all”, “A little better, but no noticeable change”, and 
“Somewhat better, but the change has not made a real 
difference” were considered non-responders, 2) subjects 
who selected “Moderately better, and a slight but notice-
able change”, “Better and a definite improvement that 
has made a real and worthwhile difference”, were consid-
ered moderate responders, and 3) subjects who selected 
“A great deal better and a considerable improvement 
that has made all the difference” were considered super 
responders. Similarly, for prediction of pain, NRS scores 
were categorized into three responder groups: mild 
(NRS < 4), moderate (NRS ≥ 4 and NRS ≤ 6), and severe 
(NRS > 6).

For the sub-study, Random Forest (RF) model (Breiman 
2001) was implemented to predict PGIC and NRS levels 
using the PROMs and WOMs collected from the Apple® 
Watch. 80% of the data was used for training the model 
and model was tested on the remaining 20%. To increase 
the robustness of the predictions among the training sets, 
the Random Forest model was trained 50 times using 
randomly selected 80% of the input data available. The 
reported outcomes were then averaged across all 50 dif-
ferent runs. Accuracies of predictive models developed 
on both main study and sub-study with and without the 
objective measures were compared. The models were 
tested with different input variables such as PROMs 
models for REALITY main study meaning PROs were 
used as inputs to the random forest model to predict NRS 
and PGIC, and PROMs or WOMs models for REAL-
ITY wearable sub-study meaning PROMs and objective 
measures were used as inputs to predict NRS and PGIC. 
Machine learning models were developed using Scikit-
lean library and hyper parameter tuning was performed 
to obtain the highest accuracy for each model.

Results
At the time of data collection, 557 patients, 324 females, 
and 233 males, at 53 investigational sites (28 in the 
United States, 23 sites in the European Union, and two 
sites in Australia) had completed at least one follow-up 
visit. Table 1 shows the baseline demographic and medi-
cal history for all the subjects included in the analysis 
from the REALITY main study. Of all subjects implanted, 
73.8% had SCS and 26.2% had DRG neurostimulators. 
A total of 1100 follow-up visits were included for the 
analysis in this paper for the main study; These included 
patient visits that collected and reported both NRS and 
PGIC at each visit. These include 336 visits at 6 months, 
411 visits at 1 year, 251 visits at 2 years, and 102 visits at 
3 years.

Twenty participants (15 males and 5 females) were 
enrolled as part of the REALITY wearable sub-study. 
Of those, one participant withdrew consent prior to the 
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permanent system implantation; All subjects in the sub-
study were implanted with an SCS system. Two partici-
pants withdrew consent after permanent implantation; 
one participant’s participation was terminated by the 
investigator; one participant was excluded from analysis 
due to a lack of wearable data. The average and standard 
deviation of participant’s age was 52.25 (± 9.7) years and 
on average sub-study subjects experienced 12.3 (± 11.7) 
years of chronic pain at baseline. At baseline, 60% of sub-
jects did not exercise, 15% exercised 1–2  days a week, 
15% exercised 3–5 days a week, and 10% exercised greater 

than 5  days a week. Similarly, 25% of subjects were 
employed full-time, 15% part-time, 40% not employed, 
and 20% disabled. The impact of pain on the subject life 
was severe or very severe in 65% of subjects, moderate in 
30%, and mild in 5% of subjects. Back pain was the pri-
mary pain diagnosis of the majority of the participants 
(85%) in the sub-study cohort; 40% of subjects suffered 
from back/lower limb PSPS type II, 20% from back/lower 
limb PSPS type I, 25% from radiculopathy, and15% from 
CRPS Type I. Each study visit was treated as a sepa-
rate data point in the analysis regardless of the subject 

Table 1 Baseline demographics and medical history for all the subjects included in the analysis

a PSPS Persistent Spinal Pain Syndrome; Type I: Non-surgical, Type II: Surgical
b CRPS Complex Regional Pain Syndrome
c (Poly)neuropathies including painful diabetic polyneuropathy and post herpetic neuralgia
d Other Chronic Pain” include Visceral Pain, Post-Amputation, and Neck and upper limb pain

Count Mean Standard Deviation N (%)

Age at Time of Consent 557 60.0 (13.8)

Height (cm) 557 169.1 (10.3)

Weight (kg) 557 88.4 (22.4)

Systolic Blood Pressure 557 132.0 (18.6)

Diastolic Blood Pressure 557 78.3 (10.8)

Pain History (years) 557 10.2 (11.2)

Sex at Birth F 58.2%

M 41.8%

Pain Etiology Back/lower Limb  PSPSa type I 16.0%

Back/lower Limb  PSPSa type II 32.3%

Radiculopathy 9.3%

CRPSb- I 15.1%

CRPSb- II (Causalgia) 12.2%

Chronic Post-surgical Pain 2.5%

Peripheral  Neuropathyc 5.9%

Other Chronic  Paind 6.6%

Neurostimulation Therapy SCS
DRG

73.8%
26.2%

Current Work Status Disabled 83 14.9%

Not Working 329 59.1%

Part Time 40 7.2%

Full Time 105 18.9%

What impact pain has on subj life? None 1 0.2%

Very Mild 2 0.4%

Mild 13 2.3%

Moderate 114 20.5%

Severe 266 47.8%

Very Severe 161 28.9%

Frequency of subject’s exercise None 297 53.3%

 < 1 Day/Week 37 6.6%

1–2 Days/Week 76 13.6%

3–5 Days/Week 94 16.9%

 > 5 Days/Week 53 9.5%
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identification. Over the course of the 6-month sub study, 
all 15 subjects provided a total of 142 data points con-
sisting of both subjective and objective data, which were 
then included in the analysis.

Wearable data compliance
The compliance rates for both completing PROMs on 
the iPhone and wearing the smart watch were relatively 
high, with median compliance rates of 88.8% and 84.7%, 
respectively for the sub-study participants. Participants 
were considered compliant if they completed the PROs 
at least three times during the baseline and once every 
month after the implant for a duration of 6 months, or if 
they wore the smart watch for at least 7 days during the 
baseline and 180 non-consecutive days after the implant. 
There was no significant difference in compliance rates 
between completing PROs on the iPhone and wearing 
the smart watch, as determined by a Wilcoxon rank-sum 
test. To ensure compliance, participants who missed pro-
viding data for more than 3 consecutive days or complet-
ing PROMs on the custom application received follow-up 
phone calls from clinic staff.

PCA results
Figure 1a and b show the PCA results on all PROMs in 
the main study and the PROMs and WOMs in the wear-
able sub-study, respectively. In both main study and 
sub-study, psychological aspects of pain characterized 
by the PCS total score, PCS helplessness, PCS magnifica-
tion, and PCS rumination were grouped together. Simi-
larly, in both datasets, ODI total score and PROMIS-29 
Pain Interference, PROMIS-29 Fatigue and Sleep Dis-
turbance, PROMIS-29 Anxiety and Depression, and 
PROMIS-29 Social Roles and Physical Function were 
grouped together. In the wearable sub-study, many objec-
tive measures related to PROMIS-29 Physical Function 
and Social Roles were grouped closely with watch fea-
tures such as daily step counts, daily walking and run-
ning distance, and total daily stand time. The PHQ-9 
metrics were only collected as part of the sub-study and 
were grouped in the same group as the PCS features. The 
heart rate variability was also grouped with these psy-
chological factors. The NRS and PGIC were highly cor-
related (correlation = -0.82), but they were grouped in 
opposite directions of the first principal component. This 
is due to the way the scoring is defined in both scales 
(high NRS values mean more pain and high PGIC means 
better improvement). In the main study, we also col-
lected a satisfaction question that was targeted at under-
standing how satisfied the subject was with pain relief 
received from the SCS device. This satisfaction question 
also grouped closely with the NRS in the main study. The 
first 3 principal components (PC) account for 72.9% of 

the variance in the REALITY main study (PC1 = 53.4%, 
PC2 = 11.6%, and PC3 = 8.1%) and 66.9% of the vari-
ance in the REALITY wearable sub-study (PC1 = 40.5%, 
PC2 = 18.4%, and PC3 = 8.0%) (Fig. 1). Score plots for the 
PROMs data of the main study and wearable sub-study 
data are shown in Fig. 2. This figure confirms the overlap 
of subject’s datapoint distributions in the wearable sub 
study with the larger Reality main study.

Modeling of pain and PGIC using objective and subjective 
measures
The physical, physiological, and behavioral data collected 
actively and passively throughout the study using weara-
bles (sub-study only) and questionnaires (both the main 
and sub-study) were used to construct machine learn-
ing models to classify PGIC and NRS in the study par-
ticipants. A separate model for each of these two metrics 
was used. Figure 3 illustrates the flowchart for the predic-
tion models including objective wearable data, subjective 
questionnaires, and baseline demographic and medical 
history as inputs for the sub-study. The main difference 
for the main study was lack of wearable data as an input 
to the models and PROMs collection happened in the 
clinic instead of on a custom application. Random Forest 
classification model was selected based on the superior 
performance and the ability to produce interpretable fea-
tures compared with other machine learning techniques 
to predict both PGIC and NRS.

Table  2 summarizes the model evaluation metrics for 
predicting NRS and PGIC in both main study and the 
wearable sub-study. For the sub-study subjects, the sub-
jective model for PGIC had the highest accuracy (Accu-
racy = 0.81 ± 0.06, F1 Score = 0.81 ± 0.07) compared to 
the wearable objective PGIC model that showed the 
accuracy of 0.75 ± 0.07 (F1 Score = 0.73 ± 0.08) (Table 2). 
The accuracy of PROMs NRS model was 0.81 ± 0.07 (F1 
Score = 0.80 ± 0.07) and the NRS model for objective data 
had 0.78 ± 0.06 accuracy (F1 Score = 0.75 ± 0.07).

Figure  4 illustrates the average and standard devia-
tion of the top 10 features across the 50 runs for pre-
diction of the PGIC and NRS in the wearable sub study. 
For PGIC model using wearable measures (Fig. 4a), step 
counts, heart rate and heart rate variability post perma-
nent implantation were among the top objective predic-
tors, whereas PROMs such as, ODI total score, and pain 
average (NRS) were among the top subjective features 
(Fig. 4b). Baseline Exercise Frequency also showed as an 
important feature in both models for PGIC.

For NRS, heart rate, step counts, and heart rate vari-
ability were among the top objective features (Fig.  4c), 
whereas PROMs such as PCS rumination, ODI total 
score, PCS total score, and PGIC, were among the top 
subjective features (Fig.  4d). Baseline number of years 
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patient is dealing with chronic pain (Pain History) also 
showed as an important feature in both models for PGIC. 
Supplementary Fig. A1, shows the average and standard 
deviation of top 10 input features for REALITY sub-study 

across 50 runs, using both objective wearable and subjec-
tive measures as inputs for predicting NRS and PGIC. 
Supplementary Fig. A2, illustrates the distribution of 
the top wearable input features over the 6-month period 

Fig. 1 PCA loadings of top three principal components in a) the REALITY main study, and b) the REALITY sub-study
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Fig. 2 Comparison of scores (samples) for the first 3 principal components between REALITY main study (gray dots) and wearable sub-study 
(purple dots)

Fig. 3 Data pipeline with different data sources (objective, subjective, and baseline demographics) used as an input to the machine learning model 
to predict pain and PGIC categories in the REALITY sub-study

Table 2 Evaluation metrics and accuracies for the classification models

Study Inputs Output Accuracy F1 score Specificity Sensitivity

Wearable
Sub-study

WOMs PGIC 0.75 ± 0.07 0.73 ± 0.08 0.86 ± 0.04 0.69 ± 0.08

PROMs PGIC 0.81 ± 0.06 0.81 ± 0.07 0.91 ± 0.03 0.77 ± 0.07

WOMs & PROMs PGIC 0.82 ± 0.04 0.81 ± 0.05 0.91 ± 0.02 0.77 ± 0.05

WOMs NRS 0.78 ± 0.06 0.75 ± 0.07 0.83 ± 0.05 0.63 ± 0.10

PROMs NRS 0.81 ± 0.07 0.80 ± 0.07 0.87 ± 0.04 0.69 ± 0.11

WOMs & PROMs NRS 0.81 ± 0.06 0.80 ± 0.07 0.87 ± 0.05 0.68 ± 0.10

Main Study PROMs PGIC 0.71 ± 0.02 0.71 ± 0.03 0.82 ± 0.02 0.66 ± 0.03

PROMs NRS 0.64 ± 0.02 0.64 ± 0.03 0.81 ± 0.01 0.61 ± 0.02
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after the permanent implant for PGIC and NRS predic-
tive WOMs models.

For the REALITY main subjects, only PROMs were 
available, and the model accuracy was lower compared 
to the sub-study model (F1 Score = 0.71 ± 0.03 and 

Accuracy = 0.71 ± 0.02). Figure  5a and b illustrates aver-
age and standard deviation of the top 10 features across 
the 50 runs for the prediction of PGIC and NRS using 
subjective measures in the REALITY main study. For 
both NRS and PGIC in the main study, PROMIS-29 

Fig. 4 Average and standard deviation of feature importance for top 10 features in prediction models for REALITY wearable sub-study across 
50 runs (a) PGIC prediction model using objective wearable measures as input; (b) PGIC model using subjective questionnaires plus baseline 
demographics as input; (c) NRS prediction model using objective wearable measures as input (d) NRS prediction model using subjective 
questionnaires plus baseline demographics as input. PR29 stands for PROMIS29 questionnaire

Fig. 5 Average and standard deviation of feature importance for top 10 features in the PGIC (a) and NRS (b) prediction using subjective 
questionnaires, plus baseline demographics on REALITY main study. PR29 stands for PROMIS29 questionnaire
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Pain Interference, Social Roles and Activities, Sleep Dis-
turbance, Fatigue, Physical Functions, and ODI total 
score were selected as the top features. The main differ-
ence between the two models’ top features was that the 
PGIC was an important feature for NRS perdition and 
vice versa the NRS was an important feature for PGIC 
prediction.

Discussion
In this study, we utilized PCA dimensionality reduction 
to examine the similarities between objective and sub-
jective measurements for chronic pain. We then applied 
machine learning techniques to predict SCS therapy out-
come evaluated by subject’s response to NRS or PGIC 
using both subjective questionnaires and objective meas-
ures. The PCA dimensionality reduction results pro-
vided insights and confirmed the proximity of various 
patient-reported outcome and wearable objective meas-
ures in different clusters. The psychological aspects of 
pain, characterized with PCS subscales of helplessness, 
magnification, and rumination, were found to be closely 
associated with heart rate variability features from the 
wearable. The association between HRV and chronic 
pain has been previously observed (Telles et  al. 2016; 
Goudman et al. 2021b; Koenig et al. 2016b). Our results 
confirm and expand on these findings in a more diverse 
chronic pain population treated with SCS. Not surpris-
ingly, many movement-related wearable measures cor-
related with PROMs associated physical function, and 
social role participation. In addition, within the PROMs 
there were similarities between selected features such as 
Fatigue and Sleep Disturbance, Depression and Anxiety, 
and ODI and pain interference. This could allude to the 
fact that there are overlaps across questionnaires that can 
potentially be summarized to a shorter set of measures 
more suitable for frequent digital data collection. Prior 
research has emphasized the need for improved met-
rics to better characterize long-term patient response to 
neurostimulation therapy and overall subject satisfaction 
with the therapy though combination of global health 
measures and composite health scores (Hagedorn et  al. 
2022; Gewandter et al. 2021; Huygen et al. 2023; Pilitsis 
et al. 2021).

The NRS and PGIC were highly correlated in both 
studies. While the PGIC was originally developed as 
a measure of global change in health status, it has been 
adapted for use in a variety of specific conditions includ-
ing chronic pain and has been used to assess therapeutic 
success in the absence of the NRS. Studies have shown 
that the PGIC can provide useful information about 
patients’ pain experience, including changes in pain 
intensity, frequency, and impact on daily life (Suzuki et al. 
2020). Our results showed that objective features were 

able to predict both PGIC and NRS outcomes with high 
accuracies even in the absence of subjective data in our 
sub study population.

Despite similarities of top features selected for predict-
ing both NRS and PGIC, our model prediction accuracy 
was higher for PGIC compared with the NRS using sub-
jective-only measures tested on the REALITY main study 
data with over 500 subjects. This was primarily driven by 
the top feature in the PGIC model, patient satisfaction. 
This feature had a higher correlation with the PGIC than 
the NRS as an indicator of response to therapy. Similarly, 
the PGIC questions, which queried activity limitations, 
symptoms, emotional state and quality of life, reflected 
an overall change since the study onset. This indicates 
that PGIC could be a better predictor of long-term ther-
apy outcome as it allows patients to personalize and cus-
tomize their response across numerous facets, including 
pain relief, sleep, and functional improvement over the 
period of treatment which are all of variable importance 
to different patient groups.

Subjective measures are crucial for evaluating physi-
ological and psychological aspects of pain, but their 
frequent collection is burdensome for both patients 
and clinicians. In addition, subjective outcomes can 
be manipulated by patients, and third parties are often 
skeptical of their value in assessing outcomes. Wearable 
devices can objectively measure several features affected 
by pain, such as activity, sleep, psychological health, and 
social participation. The feasibility data from our wear-
able sub-study provides an objective measurement of 
many necessary biomarkers for continuous symptom 
monitoring, with minimal data loss (Patterson et  al. 
2023). The current study showed that objective features 
were able to predict both PGIC and NRS outcomes with 
high accuracy even in the absence of subjective data in 
our sub study population. Although the accuracy of our 
models in predicting NRS and PGIC are lower on the 
main study, the confidence bounds are tighter show-
ing that models are more robust as they are trained on a 
larger population of patients.

Furthermore, it is important to compare the number 
of subject-specific data points in the two models devel-
oped on the main study and sub-study participants. In 
the main study, the model included 1100 datapoints 
from 557 unique subjects, or an average of 1.97 unique 
data points for each subject (in clinic visits). In con-
trast, the model included 142 rows of data from 15 
subjects, or an average of 9.46 unique data points 
(through a custom digital application) for each partici-
pant. Although the number of subjects is fewer in the 
sub-study compared to the main study and the main 
study model could be a closer predictor of the general 
pain patient population, the sub-study model benefits 
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from more frequent data points per patient that could 
help with better prediction of individual’s response 
over time. The lower number of data points per patient 
in the main study can also explain the reduced per-
formance of the population model for predicting both 
NRS and PGIC compared to the sub-study. In addi-
tion, collecting data with a higher resolution through 
the digital application could increase the frequency 
of data collection for remote monitoring while reduc-
ing the burden of subjective data collection on people 
with chronic pain and clinicians. Developing person-
alized therapy is specifically beneficial given the vari-
ations across different patients and could potentially 
improve the individuals’ overall therapeutic effect and 
experience.

Our study had limitations as our findings are related 
to only one study that must be further tested on other 
studies. The small sample size used for developing 
machine learning models can affect the generalizabil-
ity of our predictions across different patients. To miti-
gate this, we randomized the training and testing data 
50 times and reported the average model performance. 
Additionally, the study lacked reliable sleep data, an 
important predicting factor for pain, due to inadequate 
time resolution and binary values provided for sleep 
data. While this study demonstrated feasibility in a 
small population of participants, future studies with 
larger sample sizes of people with chronic pain are nec-
essary to address these limitations. Moreover, improve-
ments in future generations of wearable devices can 
provide access to additional sensors and data, enhanc-
ing the robustness of predictive models for individual 
pain modeling.

This study provides a foundation for the development 
of digital biomarkers for pain using wearable devices 
and other digital technologies. By identifying the key 
physiological and psychological factors associated 
with pain, researchers can develop more accurate and 
precise digital biomarkers that can be used to moni-
tor and treat pain in a more personalized and effective 
way. These biomarkers could be used to assess pain in 
real-time, monitor symptoms over time, and to inform 
clinical decision-making. We applied machine learn-
ing algorithms to a multi-dimensional data set consist 
of subjective and objective measurement to predict 
chronic pain patient response to SCS therapy assessed 
using two separate scales of NRS and PGIC.

These models could be beneficial to automate the 
monitoring of patient symptoms over time which ena-
bles remote monitoring of patients’ response to therapy 
and unlocks therapy for patients with remote geograph-
ical locations or limited access to specialized cent-
ers. Furthermore, these models can be used to detect 

adverse events and are the initial effort to develop a 
clinician-in-the-loop or a fully automated closed-loop 
system.

Conclusions
This study analyzed data collected from a diverse popula-
tion of patients with chronic pain to predict their response 
to SCS therapy using a combination of subjective and 
objective measures. The results suggest that PGIC can be 
a superior metric for predicting long-term outcomes and 
overall patient satisfaction compared to the NRS. Objective 
measures such as activity and heart rate measures obtained 
objectively from wearable devices were also found to be 
feasible in predicting therapy outcomes providing a foun-
dation for developing digital biomarkers for pain. Although 
the study had limitations, it provides insights into the 
potential of using digital biomarkers to monitor and treat 
pain in a more personalized and effective way which could 
benefit individuals with limited access to healthcare. This 
work could bring us one step closer to a patient-centric 
digital health platform which could increase patient satis-
faction with spinal cord stimulation therapy as well as the 
selection of suitable candidates to receive this therapy.
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