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HYPOTHESIS

The brain–heart-immune axis: a vago-centric 
framework for predicting and enhancing 
resilient recovery in older surgery patients
Leah Acker1,2,3,4,5,6*  , Kevin Xu1,3 and J. P. Ginsberg7 

Abstract 

Nearly all geriatric surgical complications are studied in the context of a single organ system, e.g., cardiac complica-
tions and the heart; delirium and the brain; infections and the immune system. Yet, we know that advanced age, 
physiological stress, and infection all increase sympathetic and decrease parasympathetic nervous system function. 
Parasympathetic function is mediated through the vagus nerve, which connects the heart, brain, and immune system 
to form, what we have termed, the brain–heart-immune axis. We hypothesize that this brain–heart-immune axis plays 
a critical role in surgical recovery among older adults. In particular, we hypothesize that the brain–heart-immune axis 
plays a critical role in the most common surgical complication among older adults: postoperative delirium. Further, 
we present heart rate variability as a measure that may eventually become a multi-system vital sign evaluating brain–
heart-immune axis function. Finally, we suggest the brain–heart-immune axis as a potential interventional target 
for bio-electronic neuro-immune modulation to enhance resilient surgical recovery among older adults.

Keywords Brain–heart-immune axis (BHI-a), Neuro-immune modulation, Vagus nerve stimulation (VNS), Autonomic 
nervous system (ANS), Resilience, Aging, Delirium, Postoperative delirium (POD), Perioperative medicine, Heart-rate 
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Introduction
In the next 5 years, one out of every 7 Americans age 65 
and older will need major surgery, namely an invasive, 
non-endoscopic procedure requiring general anesthesia 

(Becher et  al. 2023). However, major surgeries increase 
risk for mortality fourfold and convey a 13.4% one-year 
postsurgical mortality rate in frail older adults (Gill 
et al. 2022). Besides mortality, up to 40% of older surgi-
cal patients experience postoperative delirium (POD) 
(Austin et  al. 2019), which increases the risk for Alz-
heimer’s disease (AD) more than eightfold (Davis et  al. 
2012; Davis et al. 2017) and mortality risk up to fourfold 
(Hamilton et al. 2017). Yet, most surgeries are planned in 
advance, providing an opportunity to assess and bolster 
the patient’s physiological reserve and resilience. Here 
we propose a multi-organ system framework, centered 
around the vagus nerve, that underlies autonomic reserve 
and resilience, and we present bio-electronic medicine 
tools that can assess and affect multiple, interacting 
organ systems.
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Many studies of preoperative risk factors in older 
adults have focused on single-organ systems, particularly 
the cardiovascular (CV) system and the central nervous 
system (CNS). However, these systems do not operate 
in isolation; thus, interactions among organ systems are 
likely a critical (and potentially modifiable) contributor to 
perioperative risk among older adults. Here we propose 
that to better understand potentially modifiable periop-
erative risk factors in older adults, we must understand 
the interactions among these organs systems, particularly 
the brain, the heart, and the immune system. The vagus 
nerve links the brain, the heart, and the immune system, 
thus, providing an empirical basis for a shared framework 
across these organ systems. Of note, diminished vagal 
tone—reflected by low heart rate variability (HRV)—is 
associated with normal aging (Chen et al. 2021), dimin-
ished cognition (Arza et al. 2015; Forte et al. 2019; Sarlija 
et  al. 2021), poor resolution of inflammation (Aronson 
et al. 2001; Lampert et al. 2008), CV complications (Ernst 
et al. 2021), chronic illness (Christensen et al. 2021), and 
overall poor surgical outcomes (Ernst et al. 2017).

Given that cognitive dysfunction is the most common 
postoperative complication among older adults (Rudolph 
and Marcantonio 2011) and that the immune function 
required to modulate post-operative inflammation is 
already diminished in older age (Rea et  al. 2018; Wang 
et  al. 2020), it is possible that low vagal tone may con-
tribute to POD pathogenesis in older adults via an unfa-
vorably shifted BHI-A. Therefore, we hypothesize that the 
heart-brain-immune axis (BHI-A) plays a crucial role in 
resilient surgical recovery among older adults. Further, we 
hypothesize that the BHI-A can be assayed via HRV and 
targeted for bio-electronic neuro-immune modulatory 
interventions to enhance post-operative surgical recovery 
and improve outcomes in older adults.

The Brain–Heart‑Immune Axis (BHI‑A)
We initially conceived the BHI-A as a multi-organ sys-
tem framework to study potential mechanisms underly-
ing POD and post-operative inflammation in older adults 
(Fig.  1). The BHI-A comprises three arms that link the 
brain, heart, and immune system to one another func-
tionally via the autonomic nervous system (ANS) and 
physically via the vagus nerve and its branches. Thus, the 
BHI-A is a “vago-centric” model of physiological reserve 
and resilience.

The brain–heart arm
The brain–heart arm of the BHI-A was first reported 
in the mid-1980s by a cardiologist, Natelson, who 
described the role of the brain in the development of car-
diac arrhythmias and sudden cardiac death (Davis and 
Natelson 1993; Natelson 1985), and by two experimental 

physiologists, Levy and Martin, who described neural 
control of the heart by the ANS (Levy and Martin 1984). 
These brain–heart hypotheses grew out of experiments 
showing that electrical vagus nerve stimulation (VNS) 
resulted in direct and reflex cardiac bradyarrhythmias 
(Hageman et al. 1975) and that sinus arrhythmia—a man-
ifestation of HRV—was a reliable index of vagal cardiac 
outflow (Eckberg 1983). The World Stroke Organisation 
Brain and Heart Task Force estimates 1.5 million annual 
deaths result from dysfunction in the brain–heart arm of 
the BHI-A, largely in the setting of major adverse neu-
rological events such as stroke, which precipitate fatal 
cardiac events (Sposato et al. 2020), and cardiac arrhyth-
mias—particularly atrial fibrillation—is a leading cause of 
stroke (Wolf et al. 1991; Marini et al. 2005). Small, covert 
perioperative strokes may occur in up to 7% of non-car-
diac surgery patients aged 65 and older. These small cov-
ert perioperative strokes may contribute to POD (Neuro 
2019), and periventricular white matter changes—a 
functional magnetic imaging signature of pre-existing 
neurovascular disease—may predispose to cognitive dys-
function after surgery as well (Browndyke et  al. 2017). 
The role of the ANS in these post-operative complica-
tions, however, is largely unexplored.

Even in young “healthy” populations, the brain–heart 
arm of the BHI-A impacts cognitive performance, par-
ticularly during emotional stress. Diminished HRV has 
been linked to both acute (Dimitriev et  al. 2016) and 
chronic (Arza et  al. 2015; Chalmers et  al. 2014) anxiety 
while high HRV for age has been associated with better 
attentional control (Hansen et  al. 2003; Luque-Casado 
et  al. 2016; Park et  al. 2012), cognitive flexibility (Alba 
et  al. 2019), and sleep patterns (Tsai et  al. 2021; Yang 
et al. 2011). Thus, cognitive phenotypes originating in the 
brain are linked to the heart through the BHI-A.

The brain‑immune arm
The brain-immune arm of the BHIA, as first described 
by Tracey and colleagues (Borovikova et al. 2000; Rosas-
Ballina and Tracey 2009; Tracey 2002), forms the cholin-
ergic anti-inflammatory reflex, a parasympathetic ANS 
means by which the brain can reduce systemic inflamma-
tion through the vagus nerve. Pre-clinical models suggest 
that the cholinergic anti-inflammatory reflex also con-
trols neuro-inflammation (Frasch et  al. 2016), possibly 
through enhanced blood–brain-barrier (BBB) integrity 
(Yang et al. 2018; Lopez et al. 2012) or diminished micro-
glial activation (Huffman et al. 2019). Beyond controlling 
inflammation, brain-immune arm may also limit neural 
injury. For example, in animal models of traumatic brain 
injury (TBI), which induces a “sterile immune reaction” 
with elevated systemic white blood cell levels, unilateral 
vagotomy prior to induced TBI resulted in fewer B cells 
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and fewer CD4 + , CD25 + , and CD8 + T-cells after TBI 
compared with vagally intact animal models (Soares et al. 
1995; Newell-Rogers, et  al. 2022). Translational studies 
in human patients are needed to understand the poten-
tial clinical impact of these white-blood cell changes 
more fully. Finally, pre-clinical studies suggest that VNS 
may rebalance the BHI-A. Huffman et al. induced sepsis 
in mice via lipopolysaccharide (LPS) and then adminis-
tered either VNS or sham (Huffman et  al. 2019). VNS 
administration reversed LPS-induced microglial acti-
vation (Figs. 2 and 3), which suggests a possible role for 
bio-electronic medicine, particularly VNS, to modulate 
the brain-immune arm of the BHI-A by limiting neuro-
inflammation, and possibly neural injury, which are 
hypothesized to underlie POD (Subramaniyan and Ter-
rando 2019).

The heart‑immune arm
Evidence of a vagus nerve-mediated heart-immune 
arm of the BHI-A has emerged from studies on cardiac 

healing. In particular, in pre-clinical induced acute myo-
cardial infarction (MI) models, treatment with pyri-
dostigmine, a cholinesterase inhibitor, has been shown 
to (1) increase parasympathetic tone, as measured by 
HRV and baroreceptor sensitivity (Bandoni et  al. 2021; 
Barboza et al. 2019); (2) to induce a more favorable, anti-
inflammatory M1/M2 macrophage profile (Bandoni et al. 
2021; Rocha et al. 2016); (3) to diminish levels of inflam-
matory cytokines in the heart’s ventricles (Barboza et al. 
2019) and (4) to limit pathologic post-MI ventricular 
remodeling, which better preserves post-MI left ventric-
ular ejection fraction (Bandoni et  al. 2021). Thus, while 
heart-immune interactions remain an active research 
area with more investigation in human patients needed, 
current evidence suggests that the heart and immune 
system interact to promote overall homeostasis and heal-
ing (Thayer and Fischer 2009; Williams et al. 2019; Weber 
et al. 2010; Cooper et al. 2015).

In sum, the ANS functionally links the CNS, the CV 
and immune systems to form the vagus nerve-mediated 

Fig. 1 Top panel shows how the brain, heart, and immune system are connected to one another through the vagus nerve. Bottom panel shows 
the effects of functional vagus nerve impairment on the respective organ systems
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BHI-A. The BHI-A allows an integrated, holistic frame-
work to study the effects of physiological derangements 
such as illness, injury and surgery across multiple organ 
systems and is likely particularly valuable for studying 
reserve and resilience in older surgery patients.

Heart rate variability (HRV) as a surrogate measure of 
vagal tone and resilience HRV has become the stand-
ard surrogate measure for vagal tone (Shaffer and Gins-
berg 2017; Adamson et al. 2004; Anderson 2017; Grote, 

et al. 2019) in part because it is non-invasive and simple 
to collect compared to alternative methods (Laborde 
et al. 2017). HRV measurement is a sensitive indicator of 
parasympathetic health, and allows for nuanced evalua-
tion of autonomic nervous system (ANS) flexibility. HRV 
measurement uses a combination of time and frequency 
domain variables, as reviewed by Shaffer and Ginsberg 
(Shaffer and Ginsberg 2017). Time domain measures 
inform the amount of variability of the inter-beat-interval 
(IBI) while frequency domain measurements describe 

Fig. 2 Reprinted and modified from Huffman et al., 2019. Top left panel: Lipopolysacchirde (LPS) was administered after mice received 30 min 
of percutaneous vagus nerve stimulation (VNS). Mice were sacrificed for histology 24 h later. Bottom left panel, while microglial were largely 
activated after LPS administration (middle sub-panel), when VNS preceded LPS administration microglial morphology (right sub-panel) resembled 
that of naïve microglia (left sub-panel). Right panel: the combination of LPS and VNS largely rescued the microglial activation resulting from LPS 
administration

Fig. 3 Standard deviation of normal R-R intervals (SDNN) is one of many measures of heart rate variability. SDNN, illustrated here, is sometimes used 
because it is easy to comprehend. HRV measures have cardiovascular physiological interpretations and are widely considered to be good indicators 
of vagal tone. More detail is presented in the text
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power distribution across ultra-low- (ULF, ≤ 0.003  Hz), 
very-low- (VLF, 0.003–0.04 Hz), low frequency (LF, 0.04–
0.15  Hz) and high frequency (HF, 0.15–0.4  Hz) bands 
(Shaffer and Ginsberg 2017). LF and HF band and peak 
power values have been widely studied and were initially 
assumed to reflect sympathetic and parasympathetic 
ANS activity respectively; however, it is now known that 
LF power is an admixture of many different ANS factors 
(Billman 2013). A spectral power peak at 0.1 Hz during 
slow breathing at rest is understood to closely reflect 
indicate baroreceptor activity (McCraty and Shaffer 
2015). The HF band, which corresponds to frequencies 
of respiration and so is sometimes called the ‘respiratory 
band,’ has been correlated with cardiac parasympathetic 
activity with a strong direct correlation between HF 
power and direct recording of cardiac parasympathetic 
fibers in animal models (Piccirillo et al. 2009). Even sim-
ple time domain HRV measures vary with age (Umetani 
et  al. 1998), sex (Christensen et  al. 2021; Shaffer and 
Ginsberg 2017; Umetani et al. 1998), and race (Lampert 
et al. 2005; Wang et al. 2005) underscoring the need for 
more robust normative HRV data from diverse, well-
defined, and appropriately sampled populations.

Across different occupational and demographic 
groups, high vagal tone is important for adapting to 
acutely stressful situations. For example, those with 
stressful occupations—such as firefighters, air traf-
fic controllers (Sarlija et  al. 2021) and police officers 
(Weltman et al. 2014; Whitson et al. 2021), tend to have 
higher resting HRV reflecting a more robust vagal sys-
tem. Just as maintaining cardiovascular homeostasis 
in  situations of physical and psychological environ-
mental stress is challenging for those with stressful 
occupations, maintaining homeostasis is critical in 
the face of surgical trauma, particularly among older 
adults undergoing surgery who may have lower physi-
ological resilience. Environmental stress and surgery 
both require similar adaptive cardiovascular, cogni-
tive, and inflammatory responses (Whitson et al. 2021). 
Recovery from surgical trauma and favorable surgi-
cal outcomes in younger (Caton et  al. 2021) and older 
patients (Ernst et  al. 2021; Ernst et  al. 2017; Echizen 
et al. 2021) are associated with higher HRV (Ernst et al. 
2021; Ernst et al. 2017; Caton et al. 2021; Echizen et al. 
2021). Therefore, we hypothesize that those with higher 
resting HRV pre-operatively will be more resilient to 
surgical trauma and recover faster. Further, pre-stress 
vagal conditioning, through active interventions such 
as training or simply through healthy lifestyle choices, 
can attenuate psychological and physiological stress 
reactions and, thus, promote resilient recovery through 
parasympathetic health (Gharbo 2020).

Given that HRV is an accessible, validated indicator of 
vagal tone and parasympathetic health, we hypothesize 
that HRV will continue to be a useful, physiologically 
relevant measure of BHI-A function in coming years for 
several reasons. First, technological advances will allow 
for normative data collection and advanced HRV meas-
ures with even closer links to ANS function, such as the 
ubiquity of wearable devices, increased computing power, 
new signal processing techniques, and rapid advances in 
artificial intelligence. Second, these powerful new tools 
allow continuous HRV data collection over days, weeks 
or longer. Finally, multi-organ system studies—such as 
our “HRV in POD and post-operative inflammatory end-
points” (HiPPIE) study briefly described below—provide 
data from multiple organ systems to relate back to HRV 
data. Long duration, multi-organ system measurements 
encompassing diurnal variations and sleep cycles provide 
powerful, ecologically valid conditional manipulations. 
These natural manipulations will provide greater insight 
into ANS function throughout the normal course of life 
and recovery from illness and injury. In turn, these meas-
urements and techniques will allow us to assay BHI-A 
function longitudinally among patients who recover 
resiliently and those who do not.

The BHI-A in older surgical patients Older adults, par-
ticularly those with dementia (Toledo and Junqueira 
2008; Nicolini et  al. 2020), manifest lower HRV than 
younger adults (Chen et  al. 2021; Umetani et  al. 1998; 
Dalise, et  al. 2020), which reflects the relative increase 
in sympathetic versus parasympathetic ANS activity 
with aging. For older surgery patients, advanced age, the 
condition requiring surgery, and preoperative stress, are 
all associated with lower HRV measures (Umetani et al. 
1998; Dalise, et al. 2020) that reflect a shift in the balance 
between sympathetic and parasympathetic ANS activity 
even further toward sympathetic activation. Consistent 
with non-surgical populations in which low HRV is asso-
ciated with poor cognitive performance (Forte et al. 2019; 
Luque-Casado et  al. 2016; Blons et  al. 2019), inflamma-
tion (Lampert et al. 2008; Borovikova et al. 2000; Tracey 
2002) and diminished immune function (Borovikova 
et  al. 2000; Koopman et  al. 2016; Saeed et  al. 2005). A 
study of older hip fracture patients suggested those who 
developed post-operative delirium had higher low fre-
quency (LF) and higher high frequency (HF) HRV values 
prior to surgery (Ernst et  al. 2020); however, these data 
were difficult to interpret because nearly half of hip frac-
ture patients presented with delirium prior to surgical 
repair and because all had sustained a major injury prior 
to HRV evaluation. Therefore, additional studies of pre-
operative HRV in older adults before major elective sur-
gery are needed.
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Vagus nerve stimulation as supporting evidence for our 
hypothesis
As supporting evidence for our hypothesis, we note that 
VNS may have potential to modulate neuro-inflamma-
tion and cognition via the BHI-A.

Pre-clinical studies suggest that VNS may rebalance 
the BHI-A, as illustrated in the aforementioned Huffman 
et al. (Huffman et al. 2019) study. Here, VNS administra-
tion reversed lipopolysaccharide (LPS)-induced micro-
glial activation in mice (Fig. 2), suggesting a possible role 
for bio-electronic medicine, particularly VNS, to modu-
late the brain-immune arm of the BHI-A by limiting 
neuro-inflammation and neural injury, which are hypoth-
esized to underlie POD (Yang et al. 2020). Mice treated 
with VNS not only had a more favorable microglial pro-
file, but they also achieved a 10% reduction in heart rate 
and a factor recovery of cognitive performance post-sur-
gery (Huffman et al. 2019).

Further, human studies show promise for VNS-induced 
immune normalization. Nine patients with moderate 
Crohn’s disease underwent continuous left VNS (Sinni-
ger et  al. 2020) via implanted circumferential electrode 
for one year. At the end of the year, five patients were in 
clinical remission and six were in endoscopic remission. 
Seven patients restored their vagal tone to near homeo-
static levels, and, in general, the patients’ cytokine pro-
files showed more normal character.  In another study, 
20 patients with rheumatoid arthritis (RA) underwent 
transcutaneous VNS with resulting in reductions in RA-
associated biomarker levels (Drewes et al. 2021) consist-
ent with anti-inflammatory effects of VNS. Overall, VNS 
shows promise for modulating the BHI-A such that VNS 
may eventually be used to enhance physiological resil-
ience in the face of acute stressors, such as surgery.

In addition to electrical VNS, we note that non-phar-
macological therapies that increase vagus tone—such as 
slow deep breathing and mindfulness meditation—have 
been employed for thousands of years. Indeed, the BHI-A 
is a concept that helps to explain the modern benefits 
of these ancient practices. Further, the advent of wear-
able physiological monitors also advances non-drug, 
non-electrical techniques to bolster BHI-A function. For 
example, cardiac coherence uses biofeedback from wear-
able monitors to coordinate breathing with the heartbeat 
and, thereby, increase vagal tone.

HRV in POD and Postoperative Inflammatory Endpoints 
(HiPPIE)
As a first step toward understanding the role of the 
BHI-A in surgical recovery and its potential as an inter-
ventional target, the HiPPIE (HRV in POD and Post-
operative Inflammatory Endpoints) study will enroll 
up to 150 Duke patients age 65 and older undergoing 

scheduled, non-cardiac, non-intracranial surgeries. HiP-
PIE, a Duke Health Institutional Review Board approved 
study provides a unique opportunity to evaluate the 
role of vagal tone as an indicator of POD risk before 
and immediately after surgery. The HiPPIE study evalu-
ates interactions among the organ systems of the BHI-A 
using (a) wearable devices, (b) pre-operative and twice 
daily post-operative delirium assessments with the 3-min 
confusion assessment method (3D-CAM: Derivation and 
Validation of a 3-Minute Diagnostic Interview for CAM-
Defined Delirium. 2014), and (c) serial plasma biomarker 
samples to measure inflammation before surgery and 
24-h and 48-h after surgery.

HiPPIE measures continuous HRV via age-friendly, 
convenient wristbands (Corsano B.V) which have no 
watch face and battery life up to 7  days. Patients are 
instructed simply to charge the wristband while swim-
ming, bathing, or showering and to wear the wristband 
at all other times. By capturing HRV from the time of the 
pre-operative evaluation (typically 5–15 days before sur-
gery) through the second day after surgery, when POD 
incidence peaks (Robinson et al. 2009), we expect HiPPIE 
to capture a unique dataset encompassing the periopera-
tive function across multiple, interacting BHI-A organ 
systems. In addition, HiPPIE has a sister pilot feasibility 
study of perioperative transcutaneous VNS in a simi-
lar population, which we call POTENT (Pre-Operative 
Transcutaneous auricular vagus nerve stimulation Effects 
on Neuro-inflammatory Trends). POTENT is also a 
Duke Health Institutional Review Board Approved study.

Conclusion
We present a novel multi-organ system framework, the 
BHI-A, as a tool for understanding perioperative resil-
ience to post-operative delirium, and we introduce HRV 
and vagal nerve stimulation as means to measure and 
modulate the BHI-A, respectively. We fully expect that 
the BHI-A framework could be applied to many other 
disorders and that HRV and VNS are new bio-electronic 
means of exploring and enhancing resilience. Prior stud-
ies in humans and animals offer compelling evidence 
that interventions targeting vagal tone modulation may 
offer substantial benefits for controlling systemic inflam-
mation and neuro-inflammation, which are believed to 
contribute to POD as well as many other neurocogni-
tive disorders, such as Alzheimer’s Disease. Further, 
our studies advance the use of the BHI-A framework in 
understanding and modulating perioperative reserve and 
resilience, and we would advocate that viewing common 
disorders through the BHI-A framework would afford 
more opportunities for bio-electronic monitoring and 
bio-electronic interventions to advance human health 
broadly.
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