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Determining grasp selection from arm

trajectories via deep learning to enable
functional hand movement in tetraplegia

Nikunj Bhagat1,2* , Kevin King1,2, Richard Ramdeo1,2, Adam Stein3 and Chad Bouton1,2,3*
Abstract

Background: Cervical spinal cord injury severely affects grasping ability of its survivors. Fortunately, many
individuals with tetraplegia retain residual arm movements that allow them to reach for objects. We propose a
wearable technology that utilizes arm movement trajectory information and deep learning methods to determine
grasp selection. Furthermore, we combined this approach with neuromuscular stimulation to determine if self-
driven functional hand movement could be enabled in spinal cord injury participants.

Methods: Two cervical SCI participants performed arbitrary and natural reaching movements toward target objects
in three-dimensional space, which were recorded using an inertial sensor worn on their wrist. Time series classifiers
were trained to recognize the trajectories using either a Dynamic Time Warping (DTW) algorithm or a Long Short-
Term Memory (LSTM) recurrent neural network. As an initial proof-of-concept, we demonstrate real-time
classification of the arbitrary movements using DTW only (due to its implementation simplicity), which when used
in combination with a high density neuromuscular stimulation sleeve with textile electrodes, enabled participants
to perform functional grasping.

Results: Participants were able to consistently perform arbitrary two-dimensional and three-dimensional arm
movements which could be classified with high accuracy. Furthermore, it was found that natural reaching
trajectories for two different target objects (requiring two different grasp types) were distinct and also discriminable
with high accuracy. In offline comparisons, LSTM (mean accuracies 99%) performed significantly better than DTW
(mean accuracies 86 and 83%) for both arbitrary and natural reaching movements, respectively. Type I and II errors
occurred more frequently for DTW (up to 60 and 15%, respectively), whereas it stayed under 5% for LSTM. Also,
DTW achieved online accuracy of 79%.

Conclusions: We demonstrate the feasibility of utilizing arm trajectory information to determine grasp selection
using a wearable inertial sensor along with DTW and deep learning methods. Importantly, this technology can be
successfully used to control neuromuscular stimulation and restore functional independence to individuals living
with paralysis.

Trial registration: NCT, NCT03385005. Registered September 26, 2017
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Introduction
In the United States alone, every year there are more than
17,700 new cases of spinal cord injury (NSCISC 2019). A
majority of these injuries results in incomplete (48%) and
complete (12%) tetraplegia, which severely affects arm and
hand movements of the survivors and undermines their
quality of life. Neuromuscular stimulation offers a viable
solution to assist with arm and hand movements to in-
crease independence, but often users find it challenging to
efficiently control such stimulation devices for everyday
use. Therefore, several different modalities have been
developed to extract user intent for controlling neuromus-
cular stimulation devices in order to restore grasping.
These modalities range from conventional push button or
shoulder position control (Ragnarsson 2008; Cornwall and
Hausman 2004), to implanted muscle sensors (Kilgore
et al. 2008), and most recently brain implants (Bouton
et al. 2016; Ajiboye et al. 2017).
Grasping an object is often preceded by reaching for

the object. In fact, previous studies have shown that
grasping intentions of amputees and able-bodied partici-
pants could be inferred from their muscle activity
(electromyogram signals) during reaching (Batzianoulis
et al. 2018). Tetraplegia is most often caused by damage
to the C5 vertebra and importantly, individuals with C5
and below level injury retain sufficient control over their
deltoid and biceps muscles, which allows them to reach
for objects (Nas et al. 2015; Prasad et al. 1999). Therefore,
we proposed to develop a non-invasive approach that can
determine grasp choice in tetraplegia from a user’s natural
reaching and also arbitrary arm trajectories. Unlike previ-
ous studies that used multi-channel surface electromyog-
raphy for classifying reaching movements (Batzianoulis
et al. 2018), here we used a low-cost, wearable and easy-to-
setup inertial sensor. Further, we combined our trajectory
recognition algorithms with a custom-built neuromuscular
stimulator to determine if functional movement could be
achieved in tetraplegic SCI participants.
In recent years, inertial measurement units (IMU) are

extensively being used for human computer interactions,
particularly for gesture recognition and wearable sensing
(Siddiqui and Chan 2020). With advancement in port-
able computing devices, sophisticated machine learning
algorithms such as recurrent neural networks, can be
readily deployed for deciphering IMU data (Kim et al.
2019). For an in-depth review on neuromuscular stimu-
lator and inertial sensing for upper-limb movements, we
refer the interested reader to several review papers
discussing these technologies (Ragnarsson 2008; Popović
2014; Wang et al. 2017; Filippeschi et al. 2017). In this
study, we compared a well-known pattern recognition
algorithm called Dynamic Time Warping (DTW) with a
recurrent neural network for time series classification
called Long Short-Term Memory (LSTM). With these
methods, we classified arbitrary and natural reaching
trajectories for different target objects (requiring differ-
ent grasp types) in three-dimensional space (3D). We
hypothesized that arbitrary arm movements could be
classified with high accuracy and that natural reaching
movements associated with different target objects, and
therefore grasp types, would be distinct and discriminable
as well. We further hypothesized that although DTW-
based techniques are easily deployable and computation-
ally inexpensive, LSTM networks could outperform DTW
within sessions and across multiple days since they are
well-suited to classifying time-series patterns of variable
length and lag (Hochreiter and Schmidhuber 1997).
In Section 2, methods for the paper describing experi-

mental setup, study protocol, and training of machine
learning algorithms are presented. Section 3 presents re-
sults from offline and online validation of the algorithms,
based on data from two SCI participants and discusses
its significance.

Methods
Participants
Two participants with tetraplegia were recruited for the
study after providing informed consent. The study pro-
tocols were approved by the Institutional Review Board
of Northwell Health (Great Neck, NY). Participant 1 was
a 32 year old male, injured 6 years prior, with a C4/C5
ASIA (American Spinal Injury Association) B injury. He
participated in 10 sessions (2 h/session), out of which 7
sessions were used to record 2D and 3D arm movement
trajectories. During the remaining 3 sessions, grasp
selections were decoded online (in real-time) and used
to drive a custom neuromuscular stimulator with textile-
based electrodes housed in a sleeve (Ciancibello et al.
2019). This in turn allowed the participant to perform
functional movements (e.g. eat a granola bar). Participant
2 was a 28 year old male, injured 10 years prior, with a C4/
C5 ASIA A injury. He participated in 3 sessions, which
involved 2 training and 1 online testing session.

Experiment setup and data collection
Participants were seated with their hands initially resting
on a table. A wireless sensor module was attached to the
wrist of their arm using a Velcro strap (Fig. 1a). While
both participants were bilaterally impaired, each still
possessed residual movement that allowed reaching with
at least one of their arms, which was then used for the
study. The sensor module consisted of a 32-bit ARM
microcontroller unit (MCU) from Adafruit (Feather
Huzzah32) and a Bosch SensorTec BNO055 9-axis IMU.
The IMU has a built-in processor and algorithms to esti-
mate its orientation and perform gravity compensation
in real-time to produce linear acceleration in three
orthogonal directions. Linear acceleration along the X,



Fig. 1 a Experimental setup for utilizing reaching movements and enable grasping through the use of an IMU and textile-based electrodes. b
Closeup of custom-built IMU sensor module with microcontroller (battery not shown). c Still images showing an SCI participant using the IMU to
activate neuromuscular stimulation and eat a granola bar
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Y, and Z axes was available externally via an I2C interface.
A flexible printed circuit board was designed to intercon-
nect the IMU with the MCU as shown in Fig. 1b. Data
was continuously streamed from the MCU at 50Hz via
Bluetooth to MATLAB 2019a running on a desktop PC
and stored for offline processing.
During the experiments, verbal cues associated with

arbitrary (2D & 3D) and natural reaching (3D) move-
ment trajectories were randomly called out to the
participant. For the arbitrary movements, the partici-
pants were instructed to perform the movements within
approximately 1 s and to start from a location that
allowed them to complete the movement. It is important
to note that for the natural reaching trajectories the par-
ticipants were instructed to reach for two different target
objects on the table (a water bottle and a pen), normally
associated with two different grasps (cylindrical and pin-
cer/claw grasp respectively), and to stop just in front of
the object. Due to their hand impairment, they could
not complete the grasping action, but their natural
trajectory information was collected to determine if
there were two repeatable and discriminable patterns
associated with each target object and associated grasp.
The two different natural reaching (3D) movements were
called: ‘bottle-reach’ and ‘pen-reach’ (refer to Table 1).
Under the arbitrary reaching movement category, four 2D
movements and one 3D movement, called corkscrew, were
trained. The four 2D trajectories (performed in the horizon-
tal X-Y plane) corresponded to well-known English and
Greek letters: S, Ɛ (epsilon or E), γ (gamma), andM. Exper-
iments were conducted in blocks of 18–20 trials and suffi-
cient breaks were given between blocks to minimize
participant fatigue. Initially, the participants were asked to
perform only S and Ɛ trajectories because these were sim-
ple to learn and didn’t cause fatigue. Later, once the partici-
pants became comfortable with moving their arm, we
included additional 2D trajectories. Thus, in our final data-
sets there was a higher percentage of 2D trajectories (espe-
cially, S and Ɛ) than the remaining trajectories.
During online (real-time) testing of 2D movement rec-

ognition, participants also wore a custom-built fabric
sleeve with 128 textile-based electrodes over their forearm
to receive neuromuscular stimulation. Neuromuscular
stimulation was provided by an 8-channel proprietary,
battery-operated, voltage-controlled stimulator. The
stimulation parameters were set at 500 μs pulse-width, 20



Table 1 Number of valid 2D and 3D arm trajectories from two participants with tetraplegia, used for training and testing machine
learning algorithms. The trajectories are further categorized into arbitrary and natural reaching trajectories in 2D and 3D space
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Hz pulse frequency, and 0 - 110 V output. Additional de-
tails of the stimulator design will be presented in a forth-
coming publication. The stimulation channels were
mapped to individual or multiple electrodes on the fabric
sleeve, in order to evoke various finger flexion and exten-
sion type movements. The mapping process itself is
described in detail in a previous paper (Ciancibello et al.
2019). By grouping multiple stimulation channels and se-
quencing their activation profile, we could program differ-
ent hand movements such as opening and closing (and
different grasp types).
In a proof-of-concept demonstration in Fig. 1c, an SCI

participant uses a single 2D trajectory (M) to initiate a
neuromuscular stimulation sequence, which allowed the
participant to grasp and eat a granola bar, with his para-
lyzed hand. The stimulation sequence included the
appropriate spatial electrode pattern for opening the
hand for 5 s, followed by the pattern to evoke a cylin-
drical grasp for 5 s to hold the granola bar. Although not
implemented here, a second trajectory (e.g. corkscrew)
could be used to replace the object back onto the table.
The durations for opening and grasping of the hand
were selected, to allow enough time for the participant
to place his hand around the object and feed himself.

Data processing and machine learning
The 3-axis linear acceleration obtained from the IMU
was band-pass filtered (Butterworth, 8th order, 0.2 – 6
Hz) and processed offline for identifying training sam-
ples. The magnitude of the 3-axis acceleration vector
was used to identify onset of movement by setting a
threshold of 0.95 g. The movement onsets were then
used to segment the acceleration data over time along
the X, Y, and Z axes into windows ranging − 0.1 s to 0.9
s with respect to onset. Each trial was visually confirmed
to be free from any noise artifacts or if it exceeded the 1
s window and such trials were excluded from further
analysis. Next, to determine how discriminative the 2D
and 3D trajectories were, two time series classifiers
based on either a Dynamic Time Warping (DTW) dis-
tance measure or Long Short Term Memory (LSTM)
network algorithms were trained separately for 2D and
3D trajectories. Each classifier was trained separately for
each participant and within each participant, we used a
5-fold stratified cross-validation approach to determine
the classifier’s accuracy. For each fold a new classifier
model was trained from scratch (nested cross-
validation), in order to obtain an unbiased estimate of the
classifier’s performance. Further, for statistical comparisons,
we combined the classification accuracies from all the folds
of both participants, in order to increase the sample size and
demonstrate generalizability of the classifiers across
participants.
The DTW algorithm optimally aligns a sample trajec-

tory with respect to a previously determined template
trajectory such that the Euclidean distance between the
two trajectories is minimized. This is achieved by itera-
tively expanding or shrinking the time axis until an opti-
mal match is obtained. For multivariate data such as
acceleration, the algorithm simultaneously minimizes
the distance along the different dimensions using
dependent time warping (Shokoohi-Yekta et al. 2017). In
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our DTW-based classifier, this algorithm was used to
compute the optimal distance between a test sample and
pre-defined templates associated with the 2D and 3D
trajectories. Ultimately, the template with the smallest
optimal distance to the test sample, was selected as the
classifier’s output. The template for each trajectory type
was chosen as the training sample with the least aggre-
gate DTW score (i.e. sum of individual scores) to every
other training sample of the same type.
To implement the LSTM network we used MATLAB

R2019b’s Deep Learning Toolbox with default values for
most parameters. Specifically, an LSTM network com-
prising of a single bidirectional layer with 10 hidden
units was used. This transformed the 2D or 3D linear
acceleration data into inputs for a fully connected layer
whose outcome was binary, i.e. 0 or 1. Next, a softmax
layer was used to determine the probability of multiple
output classes. Finally, the network output mode was set
at ‘last’, so as to generate a decision only after the final
time step has passed. This allowed the LSTM classifier
to behave similarly to DTW and classify trajectory win-
dows. During training of the LSTM network weights, an
adaptive moment estimation (ADAM) solver was used
with a gradient threshold of 1 and maximum number of
epochs of 200. Since all the training and validation data
were 1 s long, zero padding was not used.
Fig. 2 Bar graphs comparing classification accuracies (Mean ± SD) using tw
evaluated using both offline (2D & 3D) and online (2D only) arm trajectorie
dashed lines represents the chance level (= 1/number of classes) under eac
During real-time classification of arm trajectories, the
linear acceleration signals were filtered and processed in
real-time using a MATLAB script that looped at 50 Hz.
Within the loop, the acceleration data was divided into
1 s long segments with 98% overlap. To demonstrate an
initial proof-of-concept, only the DTW-based classifier
was implemented, due to its simple and computationally
efficient implementation in MATLAB. For online predic-
tion, the incoming acceleration windows were compared
with 2D template trajectories of each type and if the
optimal distance between trajectories were below 10
units (empirically determined), then a positive decision
was made. This would then trigger our custom neuro-
muscular stimulator to perform a complete movement
sequence of opening and closing of the hand.

Results and discussion
Over 250 training samples across 7 movement trajector-
ies were recorded for participant 1 and 96 samples from
5 movement trajectories were recorded for participant 2.
Trials with noisy sensor data or incorrect labels were
visually identified and removed from the dataset. Table 1
shows the distribution of samples across different arbi-
trary and natural reaching trajectories for both the par-
ticipants. The top row shows a graphical representation
of trajectories of each type by reconstructing a
o machine learning algorithms: DTW and LSTM. Performance was
s. Statistical significance threshold was set at p < 0.05. The horizontal
h comparison
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participant’s hand position in space, which was obtained
by double integration of linear acceleration.
Given the unequal distribution of samples in our data-

set, a 5-fold stratified cross-validation scheme was selected
for evaluating DTW and LSTM based classifiers. Figure 2
shows the mean ± standard deviation (SD) classification
accuracy for the 2 participants. In the offline scenario
LSTM performed better than DTW for 2D trajectories,
achieving 99 ± 2% (median 100%, IQR 0%) accuracy versus
86 ± 12% (median 89%, IQR 29%), respectively. For 3D tra-
jectories also, LSTM outperformed DTW and obtained
99 ± 2% (median 100%, IQR 0%) accuracy over 83 ± 16%
(median 83%, IQR 31%). Using two-sided Wilcoxon
signed-rank test, LSTM based classification accuracy was
significantly better than DTW for both 2D (n = 10, W=
28, p = 0.016) and 3D (n = 10, W = 21, p = 0.0313) move-
ments. Also shown in Fig. 2, is the online performance of
DTW based classifier for 2D arbitrary trajectories. During
online classification, we either compared between 2 trajec-
tories (e.g. S v/s Ɛ) or between a single trajectory and rest
(e.g. M v/s rest) and achieved 79 ± 5% (median 80%, IQR
8%) accuracy. To further evaluate each classifier’s
performance for type I and II errors, we calculated their
cumulative confusion matrices by combining the
Fig. 3 Confusion matrices illustrating DTW and LSTM-based classifier perfo
confusion matrices from each fold per participant. The
resulting confusion matrices for both classifiers and for
both types of trajectories are shown in Fig. 3.
For DTW-based classifier, type I error occurred largely

for M (60%) trajectory, followed by corkscrew (37.8%)
and Ɛ (20.2%) trajectories. In terms of type II errors,
DTW-based classifier misclassified bottle-reach (14.5%),
pen-reach (13.8%) and S (10%) trajectories more often
as compared to rest of the classes. For LSTM-based clas-
sifier the type I and II errors were very low and ranged
from 0 to 4.5% for all trajectories.
In order to test the classifiers’ performance across

multiple days, we used the existing data for S and Ɛ
trajectories from three sessions. Initially, we trained the
DTW and LSTM classifiers using only 50% of trials (i.e.
20 trials) from session 1 and then tested them on
remaining 50% trials from that session. Next, we used
the same model to test trials from sessions 3 and 5 that
were recorded several days apart. As shown in Fig. 4,
DTW’s performance dropped significantly with time and
was below chance level (50%) by session 5. Whereas,
LSTM’s performance remained consistently high for all
the sessions. This further confirms the superiority of
LSTM based classifier over DTW for classifying arm
rmance for 2D & 3D trajectories



Fig. 4 Comparison of LSTM vs. DTW performance across multiple sessions. In this example, data recorded for two 2D trajectories S and Ɛ over
three sessions were used for analysis
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trajectories across multiple days, without requiring
frequent recalibrations.
A potential limitation of this study is that the LSTM-

based classifier has not been validated during online
testing. This is still under development and will be re-
ported in a future publication of this study. Nonetheless,
LSTM’s highly robust offline performance, suggests that
its online performance will be better than DTW’s online
performance. Another limitation is that a reasonable de-
gree of residual arm movements should be preserved in
order for the deep learning algorithms to reliably infer
grasp intentions. However, given that most tetraplegics
include individuals with C5 and lower level injury that
retain sufficient arm movements, a majority of SCI sur-
vivors will be able to operate this technology. Finally, the
current study does not perform an in-depth objective
evaluation of grasp performance (e.g. success rate, time
to grasp, etc.) or subjective assessment (e.g. ease of use,
intuitiveness, etc.) and will be pursued in a follow-up
study. Nevertheless, during post-session discussions with
the participants, both felt the device was intuitive and
easy to learn and utilize.

Conclusions
This study demonstrates the feasibility of utilizing infor-
mation from arbitrary and natural arm trajectories to
determine grasp selection in tetraplegia. Furthermore, it
was shown that machine learning methods can be used
to automatically recognize user selections and initiate
neuromuscular stimulator patterns for associated grasp
types. This approach has clinical viability and could be
deployed in rehabilitation centers for use in not only SCI
patients, but also individuals living with paralysis from
stroke, multiple sclerosis, traumatic brain injury, or
other injuries or diseases. Importantly, the rewarding ex-
perience of being able to control your own movements,
may lead to increased patient engagement during ther-
apy and ultimately, lead to better motor recovery.
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