Artero Castro A, Lukovic D, Jendelova P, Erceg S. Human Induced Pluripotent Stem Cell Models Of Retinitis Pigmentosa. Stem Cells. 2018;36:474–81.
Barrett JM, Hilgen G, Sernagor E. Dampening Spontaneous Activity Improves the Light Sensitivity and Spatial Acuity of Optogenetic Retinal Prosthetic Responses. Sci Rep. 2016;6:33565.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci. 2002;3:443–52.
Article
PubMed
CAS
Google Scholar
Bernabeu A, Alfaro A, Garcia M, Fernandez E. Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage. 2009;47:1172–6.
Article
PubMed
Google Scholar
Beyeler M, Rokem A, Boynton GM, Fine I. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J Neural Eng. 2017;14:051003.
Article
PubMed
PubMed Central
Google Scholar
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D. Reading a neural code. Science. 1991;252:1854–7.
Article
PubMed
CAS
Google Scholar
Boulet J, White M, Bruce IC. Temporal Considerations for Stimulating Spiral Ganglion Neurons with Cochlear Implants. J Assoc Res Otolaryngol. 2016;17:1–17.
Article
PubMed
Google Scholar
Brandli A, Luu CD, Guymer RH, Ayton LN. Progress in the clinical development and utilization of vision prostheses: an update. Eye Brain. 2016;8:15–25.
PubMed
PubMed Central
Google Scholar
Butterwick A, et al. Effect of shape and coating of a subretinal prosthesis on its integration with the retina. Exp Eye Res. 2009;88:22–9.
Article
PubMed
CAS
Google Scholar
Clark GM. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hear Res. 2015;322:4–13.
Article
PubMed
Google Scholar
Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 10:2008, 275–309.
Constantinou M, et al. A randomized, single-center study of equivalence of 2 intraocular lenses used in cataract surgery. Ophthalmology. 2013;120:482–8.
Article
PubMed
Google Scholar
da Cruz L, et al. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology. 2016;123:2248–54.
Article
PubMed
PubMed Central
Google Scholar
Dagnelie G. Visual prosthetics 2006: assessment and expectations. Expert Rev Med Devices. 2006;3:315–25.
Article
PubMed
Google Scholar
Dagnelie G. Psychophysical Evaluation for Visual Prosthesis. Annu Rev Biomed Eng. 2008;10:339–68.
Article
PubMed
CAS
Google Scholar
Dagnelie G. Retinal Prostheses: Functional Outcomes and Visual Rehabilitation. In: Humayun LCOdK MS, editor. Retinal Prosthesis, Essentials in Ophthalmolog: Springer International Publishing AG; 2018. p. 91–104.
de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W. Reproducibility and variability in neural spike trains. Science. 1997;275:1805–8.
Article
PubMed
CAS
Google Scholar
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci. 2017;11:663.
Article
PubMed
PubMed Central
Google Scholar
Delbeke J, et al. Electrical stimulation of anterior visual pathways in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2001;42:291–7.
PubMed
CAS
Google Scholar
Djilas M, et al. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng. 2011;8:046020.
Article
PubMed
CAS
Google Scholar
Dowling J. Artificial human vision. Expert Rev Med Devices. 2005;2:73–85.
Article
PubMed
Google Scholar
Eckmiller R. Learning retina implants with epiretinal contacts. Ophthalmic Res. 1997;29:281–9.
Article
PubMed
CAS
Google Scholar
Edwards G, Vetter P, McGruer F, Petro LS, Muckli L. Predictive feedback to V1 dynamically updates with sensory input. Sci Rep. 2017;7:16538.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fernandez E, Botella C. Biotolerability of Intracortical Microelectrodes. Advanced Biosystems. 2017;2:1–14.
Google Scholar
Fernandez E, et al. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng. 2005;2:R1–R12.
Article
PubMed
CAS
Google Scholar
Fernandez E, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng. 2014;7:24.
Article
PubMed
PubMed Central
Google Scholar
Flores T, Goetz G, Lei X, Palanker D. Optimization of return electrodes in neurostimulating arrays. J Neural Eng. 2016;13:036010.
Article
PubMed
Google Scholar
Foerster O. Beitraege zur Pathophysiologie der Sehbahn und der Sehsphaere [Contributions to the pathophysiology of the visual pathway and the visual sphere]. J Psychol Neurol. 1929;39:435–63.
Google Scholar
Foroushani AN, Pack C, Sawan M. Cortical visual prostheses: from microstimulation to functional percept. J. Neural Eng. 2018;15:021005.
Article
Google Scholar
Freeman DK, Eddington DK, Rizzo JF 3rd, Fried SI. Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol. 2010;104:2778–91.
Article
PubMed
PubMed Central
Google Scholar
Gilbert CD, Li W, Piech V. Perceptual learning and adult cortical plasticity. J Physiol. 2009;587:2743–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gosalia K, Weiland J, Humayun M, Lazzi G. Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans Biomed Eng. 2004;51:1469–77.
Article
PubMed
Google Scholar
Heiduschka P, Thanos S. Implantable bioelectronic interfaces for lost nerve functions. Prog. Neurobiol. 1998;55:433–61.
Article
PubMed
CAS
Google Scholar
Higuchi A, et al. Stem Cell Therapies for Reversing Vision Loss. Trends Biotechnol. 2017;35:1102–17.
Article
PubMed
CAS
Google Scholar
Humayun MS, de Juan E, Jr., Dagnelie G. (2016) The Bionic Eye: A Quarter Century of Retinal Prosthesis Research and Development. Ophthalmology 123: S89-S97.
Humayun MS, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 2003;43:2573–81.
Article
PubMed
Google Scholar
Introduction to Visual Prostheses [Internet]. 2018]. Available from: http://webvision.org.es/visual-prostheses/.
Izquierdo-Serra M, et al. Optical control of endogenous receptors and cellular excitability using targeted covalent photoswitches. Nat Commun. 2016;7:12221.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jain S, Vipin Ghosh PG. Acoustic simulation of cochlear implant hearing: Effect of manipulating various acoustic parameters on intelligibility of speech. Cochlear Implants Int. 2018;19:46–53.
PubMed
Google Scholar
Jeter PE, et al. Development of the Ultra-Low Vision Visual Functioning Questionnaire (ULV-VFQ). Transl Vis Sci Technol. 2017;6:11.
Article
PubMed
PubMed Central
Google Scholar
Jiang G, Zhou DD. Technology advances and challenges in hermetic packaging for implantable medical devices. In: Zhou DD, Greenbaum E, editors. Implantable Neural Prostheses 2. Springer, New York, NY; 2009. p. 27–61.
Karni A, Bertini G. Learning perceptual skills: behavioral probes into adult cortical plasticity. Curr Opin Neurobiol. 1997;7:530–5.
Article
PubMed
CAS
Google Scholar
Khalili Moghaddam G, Lovell NH, Wilke RG, Suaning GJ, Dokos S. Performance optimization of current focusing and virtual electrode strategies in retinal implants. Comput Methods Programs Biomed. 2014;117:334–42.
Article
PubMed
Google Scholar
Killian NJ, Vurro M, Keith SB, Kyada MJ, Pezaris JS. Perceptual learning in a non-human primate model of artificial vision. Sci Rep. 2016;6:36329.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kolb H, Fernandez E, Nelson R. (1995-) Webvision: The Neural Organization of Retina and Visual System (available at: https://www.ncbi.nlm.nih.gov/books/NBK11530/).
Kowler E. Eye movements: the past 25 years. Vision Res. 2011;51:1457–83.
Article
PubMed
PubMed Central
Google Scholar
Lazzi G. Thermal effects of bioimplants. IEEE Eng Med Biol Mag. 2005;24:75–81.
Article
PubMed
Google Scholar
Lee SW, Fallegger F, Casse BD, Fried SI. Implantable microcoils for intracortical magnetic stimulation. Sci Adv. 2016;2:e1600889.
Article
PubMed
PubMed Central
CAS
Google Scholar
Legge GE, STL C. Low Vision and Plasticity: Implications for Rehabilitation. Annu Rev Vis Sci. 2016;2:321–43.
Article
PubMed
Google Scholar
Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73.
Article
PubMed
CAS
Google Scholar
Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol. 2018;433:132–43.
Article
PubMed
CAS
Google Scholar
Lorach H, et al. Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J Neural Eng. 2012;9:066004.
Article
PubMed
Google Scholar
Lorach H, et al. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration. Invest Ophthalmol Vis Sci. 2015;56:7444–50.
Article
PubMed
PubMed Central
Google Scholar
Lorach H, et al. Photovoltaic restoration of sight with high visual acuity. Nat Med. 2015;21:476–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo YH, Fukushige E, Da Cruz L. The potential of the second sight system bionic eye implant for partial sight restoration. Expert Rev Med Devices. 2016;13:673–81.
Article
PubMed
CAS
Google Scholar
Marin C, Fernandez E. Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroengineering. 2010;3:8.
Article
PubMed Central
Google Scholar
Martínez-Álvarez A, Olmedo-Paya A, Cuenca-Asensi S, Ferrandez JM, Fernandez E. RetinaStudio: A bioinspired framework to encode visual information. Neurocomputing. 2013;114:45–53.
Article
Google Scholar
Martinez-Conde S, Otero-Millan J, Macknik SL. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat Rev Neurosci. 2013;14:83–96.
Article
PubMed
CAS
Google Scholar
Matteucci PB, et al. The Effect of Electric Cross-Talk in Retinal Neurostimulation. Invest Ophthalmol Vis Sci. 2016;57:1031–7.
Article
PubMed
Google Scholar
Maynard EM. Visual prostheses. Annu Rev Biomed Eng. 2001;3:145–68.
Article
PubMed
CAS
Google Scholar
McIntyre CC, Grill WM. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J Neurophysiol. 2002;88:1592–604.
Article
PubMed
Google Scholar
Merabet LB, Rizzo JF 3rd, Pascual-Leone A, Fernandez E. 'Who is the ideal candidate?': decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity. J Neural Eng. 2007;4:S130–5.
Article
PubMed
Google Scholar
Merabet LB, Rizzo JF, Amedi A, Somers DC, Pascual-Leone A. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci. 2005;6:71–7.
Article
PubMed
CAS
Google Scholar
Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (Lond). 2017;31:1383–98.
Article
CAS
Google Scholar
Nagel G, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS. 2003;100:13940–5.
Article
PubMed
CAS
Google Scholar
Najarpour Foroushani A, Pack C, Sawan M. Cortical visual prostheses: from microstimulation to functional percept. J Neural Eng. 2018;15:021005.
Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci U S A. 2012;109:15012–7.
Article
PubMed
PubMed Central
Google Scholar
Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J Neural Eng. 2016;13:061003.
Article
PubMed
Google Scholar
Normann RA, Maynard E, Guillory KS, Warren DJ. Cortical implants for the blind. IEEE Spectrum. 1996:54–9.
Normann RA, et al. Toward the development of a cortically based visual neuroprosthesis. J Neural Eng. 2009;6:035001.
Article
PubMed
PubMed Central
Google Scholar
Olmedo-Paya A, Martinez-Alvarez A, Cuenca-Asensi S, Ferrandez JM, Fernandez E. Modeling the role of fixational eye movements in real-world scenes. Neurocomputing. 2015;151:78–84.
Article
Google Scholar
Osterberg G. (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica Supplement 6: 1–103.
Pancrazio JJ, et al. Thinking Small: Progress on Microscale Neurostimulation Technology. Neuromodulation. 2017;20:745–52.
Article
PubMed
PubMed Central
Google Scholar
Penfield W, Jaspers H. (1974) Epilepsy and the functional anatomy of the human brain. London, England: Churchill.
Penfield W, Rasmussen T. (1950) The cerebral cortex of man. New York: Macmillan.
Pezaris JS, Eskandar EN. Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg Focus. 2009;27:E6.
Article
PubMed
PubMed Central
Google Scholar
Pezaris JS, Reid RC. Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci U S A. 2007, 104:7670–5.
Ptito M, Kupers R. Cross-modal plasticity in early blindness. J Integr Neurosci. 2005;4:479–88.
Article
PubMed
Google Scholar
Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci. 2003;44:5362–9.
Article
PubMed
Google Scholar
Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. 2015;5:a017111.
Article
PubMed Central
CAS
Google Scholar
Sahel JA, Roska B. Gene therapy for blindness. Annu Rev Neurosci. 2013;36:467–88.
Article
PubMed
CAS
Google Scholar
Sanefuji M, et al. A rightward saccade to an unexpected stimulus as a marker for lateralised visuospatial attention. Sci Rep. 2018;8:7562.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sengupta A, et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol Med. 2016;8:1248–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M. Adaptation of retinal processing to image contrast and spatial scale. Nature. 1997;386:69–73.
Article
PubMed
CAS
Google Scholar
Stingl K, et al. What can blind patients see in daily life with the subretinal Alpha IMS implant? Current overview from the clinical trial in Tubingen. Ophthalmologe. 2012;109:136–41.
Article
PubMed
CAS
Google Scholar
Stingl K, et al. Subretinal Visual Implant Alpha IMS--Clinical trial interim report. Vision Res. 2015;111:149–60.
Article
PubMed
Google Scholar
Stingl K, et al. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Front Neurosci. 2017;11:445.
Article
PubMed
PubMed Central
Google Scholar
Troyk P, et al. A model for intracortical visual prosthesis research. Artif Organs. 2003;27:1005–15.
Article
PubMed
Google Scholar
Tung JK, Berglund K, Gross RE. Optogenetic Approaches for Controlling Seizure Activity. Brain Stimul. 2016;9:801–10.
Vanhoestenberghe A, Donaldson N. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J Neural Eng. 2013;10:031002.
Article
PubMed
CAS
Google Scholar
Veraart C, Duret F, Brelen M, Oozeer M, Delbeke J. Vision Rehabilitation in the Case of Blindness. Expert review of Medical Devices. 2004;1:139–53.
Article
PubMed
Google Scholar
Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J. Pattern recognition with the optic nerve visual prosthesis. Artif Organs. 2003;27:996–1004.
Article
PubMed
Google Scholar
Vurro M, Crowell AM, Pezaris JS. Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci. 2014;8:816.
Article
PubMed
PubMed Central
Google Scholar
Walter P, et al. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina. 1999;19:546–52.
Article
PubMed
CAS
Google Scholar
Weiland JD, Walston ST, Humayun MS. Electrical Stimulation of the Retina to Produce Artificial Vision. Annu Rev Vis Sci. 2016;2:273–94.
Article
PubMed
Google Scholar
Wu KJ, Zhang C, Huang WC, Li LM, Ren QS. Current research of C-Sight visual prosthesis for the blind. Conf Proc IEEE Eng Med Biol Soc. 2010, 2010:5875–8.
Yao T, Treue S, Krishna BS. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT. Nat Commun. 2018;9:958.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao Y, et al. Recognition of a Virtual Scene via Simulated Prosthetic Vision. Front Bioeng Biotechnol. 2017;5:58.
Article
PubMed
PubMed Central
Google Scholar
Zrenner E. Will retinal implants restore vision? Science. 2002;295:1022–5.
Article
PubMed
CAS
Google Scholar