Menon DK, Schwab K, Wright DW, Mass AI, on behalf of The Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health. (2010) Position statement: definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 91:1637–40.
Article
Google Scholar
Coronado VG, et al. (2011) Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill. Summary. 60:1–32.
Google Scholar
Greve MW, Zink BJ. (2009) Pathophysiology of traumatic brain injury. Mt. Sinai J. Med. 76:97–104.
Article
Google Scholar
Parikh S, Koch M, Narayan RK. (2007) Traumatic brain injury. Int. Anesthesiol. Clin. 45:119–35.
Article
Google Scholar
O’Connor WT, Smyth A, Cilchrist MD. (2011) Animal models of traumatic brain injury: a critical evaluation. Pharmacol. Ther. 130:106–13.
Article
Google Scholar
Narayan RK, et al. (2002) Clinical trials in head injury. J. Neurotrauma. 19:503–57.
Article
Google Scholar
Fakhry SM, Trask AL, Waller MA, Watts DD, IRTC Neurotrauma Task Force. (2004) Management of brain-injured patients by an evidence-based medicine protocol improves outcomes and decreases hospital charges. J. Trauma, 56:492–9.
Article
Google Scholar
Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick PJ. (2002) Specialist neurocritical care and outcome from head injury. Intensive Care Med. 28:547–53.
Article
Google Scholar
Cecil S, Chen PM, Callaway SE, Rowland SM, Adler DE, Chen JW. (2011) Traumatic brain injury: advanced multimodal neuromonitoring from theory to clinical practice. Crit. Care Nurse. 31:25–36.
Article
Google Scholar
Tisdall MM, Smith M. (2007) Multimodal monitoring in traumatic brain injury: current status and future directions. Br. J. Anaesth. 99:61–7.
Article
CAS
Google Scholar
Wartenberg KE, Schmidt JM, Mayer SA. (2007) Multimodality monitoring in neurocritical care. Crit. Care Clin. 23:507–38.
Article
CAS
Google Scholar
Stuart RM, et al. (2010) Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit. Care. 12:188–98.
Article
Google Scholar
Suarez JI. (2006) Outcome in neurocritical care: advances in monitoring and treatment and effect of a specialized neurocritical care team. Crit. Care Med. 34(SUPPL. 9):S232–8.
Article
Google Scholar
Messerer M, Daniel RT, Oddo M. (2012) Neuromonitoring after major neurosurgical procedures. Minerva Anestesiologica. 78:810–22.
CAS
PubMed
Google Scholar
Alves OL, Bullock R, Clausen T, Reinert M, Reeves TM. (2005) Concurrent monitoring of cerebral electrophysiology and metabolism after traumatic brain injury: an experimental and clinical study. J. Neurotrauma. 22:733–49.
Article
Google Scholar
Hajjhassan M, Chodavarapu V, Musallam S. (2008) NeuroMEMS: Neural probe microtechnologies. Sensors. 8:6704–26.
Article
CAS
Google Scholar
Grayson A. et al. (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE. 92:6–21.
Article
CAS
Google Scholar
Song YA, Ibrahim AM, Rabie AN, Han J, Lin SJ. (2013) Microfabricated nerve-electrode interfaces in neural prosthetics and neural engineering. Biotechnol. Genet. Eng. Rev. 29:113–34.
Article
CAS
Google Scholar
Li C, Han J, Ahn CH. (2007) Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. Biosens. Bioelectron. 22:1988–93.
Article
CAS
Google Scholar
Li C, Wu PM, Han J, Ahn CH. (2008) A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomed. Microdevices. 10:671–9.
Article
CAS
Google Scholar
Li C, Wu PM, Jung W, Ahn CH, Shutter LA, Narayan RK. (2009) A novel lab-on-a-tube for multimodality neuromonitoring of patients with traumatic brain injury (TBI). Lab Chip. 9:1988–90.
Article
CAS
Google Scholar
Tseng IH, Chang CJ, Chang CW, Lu HH, Tsai MH. (2013) Effect of magnetron sputtered silicon nitride on the water-vapor-permeation-rate of polyimide thin film. Surf Coat Tech. 231:496–500.
Article
CAS
Google Scholar
Wu Z, Li C, Bhattacharjee N, Hartings JA, Narayan RK, Ahn CH. (2013) A new intracranial pressure sensor on polyimide lab-on-a-tube using exchanged polysilicon piezoresistors. In: Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on 2013 Jun 16–20; Barcelona, Spain [Internet]. p 1779–82. [cited 2014 Nov 13]. Available from: https://doi.org/ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6627133&searchWithin%3Da+new+intracranial%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6626676%29
Li C, Ahn CH, Shutter LA, Narayan RK. (2009) Toward real-time continuous brain glucose and oxygen monitoring with a smart catheter. Biosens. Bioelectron. 25:173–8.
Article
CAS
Google Scholar
Fontes MBA. (2013) Electrodes for bio-application: recording and stimulation. J. Physics Conf. Ser. 421:1–7.
Article
Google Scholar
Li C, et al. (2012) Brain-friendly amperometric enzyme biosensor based on encapsulated oxygen generating biomaterial. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012:6003–6.
PubMed
Google Scholar
Li C, et al. (2012) Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements, Biomed. Microdevices. 14:759–6.
Article
Google Scholar
Li C, et al. (2012) Brain temperature measurement: A study of in vitro accuracy and stability of smart catheter temperature sensors. Biomed. Microdevices. 14:109–18.
Article
CAS
Google Scholar
Li C, et al. (2011) Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring, Appl. Phys. Lett. 99:233705.
Article
Google Scholar
Menshykau D, Javier del Campo F, Munoz FX, Compton RG. (2009) Current collection efficiency of micro- and nano-ring-recessed disk electrodes and of arrays of these electrodes. Sens. Actuators B. Chem. 138:362–7.
Article
CAS
Google Scholar
Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ. (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke. 29:2162–70.
Article
CAS
Google Scholar
Longa EZ, Weinstein PR, Carlson S, Cummins R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20:84–91.
Article
CAS
Google Scholar