Bettinger CJ. Elastomers for tissue engineering and cell–biomaterial interactions. Macromol Biosci. 2011;11:467–82.
Article
PubMed
CAS
Google Scholar
Bettinger CJ, Bao Z. Organic thin-film transistors fabricated on Resorbable biomaterial substrates. Adv Mater. 2010a;22:651–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bettinger CJ, Bao Z. Biomaterials-based organic electronic devices. Polym Int. 2010b;59:563–7.
PubMed
PubMed Central
CAS
Google Scholar
Bettinger CJ, Bruggeman JP, Borenstein JT, Langer R. In vitro and in vivo degradation of poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) elastomers. J Biomed Mater Res A. 2009;91A:1077–88.
Article
CAS
Google Scholar
Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS. Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials. 2008;29:2315–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT. Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials. 2006b;27:2558–65.
Article
PubMed
CAS
Google Scholar
Bettinger CJ, et al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater. 2006a;18:165–9.
Article
CAS
Google Scholar
Braley S. The chemistry and properties of the medical-grade silicones. J Macromol Sci Part - Chem. 1970;4:529–44.
Article
CAS
Google Scholar
Caldwell R, et al. Analysis of Al 2 O 3 —parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays. J Neural Eng. 2017;14:046011.
Article
PubMed
Google Scholar
Chang, J.-K. et al. Materials and processing approaches for foundry-compatible transient electronics. Proc. Natl. Acad. Sci. 201707849 (2017). doi:https://doi.org/10.1073/pnas.1707849114
Charati SG, Stern SA. Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules. 1998;31:5529–35.
Article
CAS
Google Scholar
Christensen MB, et al. The foreign body response to the Utah slant electrode Array in the cat sciatic nerve. Acta Biomater. 2014;10:4650–60.
Article
PubMed
CAS
Google Scholar
Cogan SF. Stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.
Article
PubMed
CAS
Google Scholar
Cogan SF, Guzelian AA, Agnew WF, Yuen TGH, McCreery DB. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Methods. 2004;137:141–50.
Article
PubMed
CAS
Google Scholar
Cogan SF, Troyk PR, Ehrlich J, Plante TD. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. IEEE Trans Biomed Eng. 2005;52:1612–4.
Article
PubMed
Google Scholar
Cogan SF, et al. Sputtered iridium oxide films for neural stimulation electrodes. J Biomed Mater Res B Appl Biomater. 2009;89B:353–61.
Article
CAS
Google Scholar
Cutrone A, et al. A three-dimensional self-opening intraneural peripheral interface (SELINE). J Neural Eng. 2015;12:016016.
Article
PubMed
CAS
Google Scholar
Ding H, et al. Elastomeric conducting polyaniline formed through topological control of molecular templates. ACS Nano. 2016;10:5991–8.
Article
PubMed
CAS
Google Scholar
Espinosa J, Aiello MT, Naritoku DK. Revision and removal of stimulating electrodes following long-term therapy with the vagus nerve stimulator. Surg Neurol. 1999;51:659–64.
Article
PubMed
CAS
Google Scholar
Fallenstein GT, Hulce VD, Melvin JW. Dynamic mechanical properties of human brain tissue. J Biomech. 1969;2:217–26.
Article
PubMed
CAS
Google Scholar
Favre E, Schaetzel P, Nguygen QT, Clément R, Néel J. Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis. J Membr Sci. 1994;92:169–84.
Article
CAS
Google Scholar
Gozen BA, Tabatabai A, Ozdoganlar OB, Majidi C. High-density soft-matter electronics with Micron-scale line width. Adv Mater n/a-n/a. 2014; https://doi.org/10.1002/adma.201400502.
Green RA, et al. Performance of conducting polymer electrodes for stimulating neuroprosthetics. J Neural Eng. 2013;10:016009.
Article
PubMed
CAS
Google Scholar
Grill WM, Mortimer JT. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J Biomed Mater Res. 2000;50:215–26.
Article
PubMed
CAS
Google Scholar
Grill WM, Norman SE, Bellamkonda RV. Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng. 2009;11:1–24.
Article
PubMed
CAS
Google Scholar
Guo L, et al. A PDMS-based integrated stretchable microelectrode Array (isMEA) for neural and muscular surface interfacing. IEEE Trans Biomed Circuits Syst. 2013;7:1–10.
Article
Google Scholar
Hara SA, et al. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes. J Neural Eng. 2016;13:066020.
Article
PubMed
Google Scholar
Hassler C, Boretius T, Stieglitz T. Polymers for neural implants. J Polym Sci Part B Polym Phys. 2011;49:18–33.
Article
CAS
Google Scholar
Hoon Lee J, Kim H, Hun Kim J, Lee S-H. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip. 2016;16:959–76.
Article
CAS
Google Scholar
Hung K-C, Tseng C-S, Hsu S. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater. 2014;3:1578–87.
Article
PubMed
CAS
Google Scholar
Hwang S-W, et al. A physically transient form of silicon electronics. Science. 2012;337:1640–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hwang S-W, et al. Dissolution chemistry and biocompatibility of single-crystalline silicon Nanomembranes and associated materials for transient electronics. ACS Nano. 2014;8:5843–51.
Article
PubMed
CAS
Google Scholar
Irimia-Vladu M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev. 2013;43:588–610.
Article
Google Scholar
Jakus AE, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano. 2015;9:4636–48.
Article
PubMed
CAS
Google Scholar
Kim D-H, Ghaffari R, Lu N, Rogers JA. Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng. 2012;14:113–28.
Article
PubMed
CAS
Google Scholar
Kim D-H, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater. 2010;9:511–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim Y, et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature. 2013;500:59–63.
Article
PubMed
CAS
Google Scholar
Lacour SP, Wagner S, Narayan RJ, Li T, Suo Z. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J Appl Phys. 2006;100:014913.
Article
CAS
Google Scholar
Ladd C, So J-H, Muth J, Dickey MD. 3D printing of free standing liquid metal microstructures. Adv Mater. 2013;25:5081–5.
Article
PubMed
CAS
Google Scholar
Loeb GE, Bak MJ, Salcman M, Schmidt EM. Parylene as a chronically stable, Reproducible Microelectrode Insulator. IEEE Trans Biomed Eng. 1977;BME-24:121–8.
Article
CAS
Google Scholar
Macdonald E, et al. 3D printing for the rapid prototyping of structural electronics. IEEE Access. 2014;2:234–42.
Article
Google Scholar
Mannoor MS, et al. 3D printed bionic ears. Nano Lett. 2013;13:2634–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meitl MA, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater. 2006;5:33–8.
Article
CAS
Google Scholar
Minev IR, et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015;347:159–63.
Article
PubMed
CAS
Google Scholar
Münzenrieder, N. et al. Stretchable and Conformable Oxide Thin-Film Electronics. Adv. Electron. Mater. 1, n/a-n/a (2015).
Muth JT, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26:6307–12.
Article
PubMed
CAS
Google Scholar
Narayan RJ, Boehm RD, Sumant AV. Medical applications of diamond particles & surfaces. Mater Today. 2011;14:154–63.
Article
CAS
Google Scholar
Nijst CLE, et al. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules. 2007;8:3067–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noh H, Moon K, Cannon A, Hesketh PJ, Wong CP. Wafer bonding using microwave heating of parylene intermediate layers. J Micromechanics Microengineering. 2004b;14:625.
Article
CAS
Google Scholar
Noh H-S, Huang Y, Hesketh PJ. Parylene micromolding, a rapid and low-cost fabrication method for parylene microchannel. Sens Actuators B Chem. 2004a;102:78–85.
Article
CAS
Google Scholar
Nolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials. 2015;53:753–62.
Article
PubMed
CAS
Google Scholar
Rivnay J, Owens RM, Malliaras GG. The rise of organic bioelectronics. Chem Mater. 2014;26:679–85.
Article
CAS
Google Scholar
Robb WL. Thin silicone membranes-their permeation properties and some applications. Ann N Y Acad Sci. 1968;146:119–37.
Article
PubMed
CAS
Google Scholar
Schachter SC. Vagus nerve stimulation therapy summary. Neurology. 2002;59:S15.
Article
PubMed
Google Scholar
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-Based Biomimetic Functional Materials. Adv Mater. 2013;25:653–701.
Article
PubMed
CAS
Google Scholar
Spearman BS, et al. Tissue-engineered peripheral nerve interfaces. Adv Funct Mater n/a-n/a. 2017; https://doi.org/10.1002/adfm.201701713.
Spivack MA, Ferrante G. Determination of the water vapor permeability and continuity of ultrathin Parylene membranes. J Electrochem Soc. 1969;116:1592–4.
Article
CAS
Google Scholar
Stieglitz T, Beutel H, Schuettler M, Meyer J-U. Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces. Biomed Microdevices. 2000;2:283–94.
Article
Google Scholar
Stieglitz T, Schuetter M, Koch KP. Implantable biomedical microsystems for neural prostheses. IEEE Eng Med Biol Mag. 2005;24:58–65.
Article
PubMed
Google Scholar
Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler DJ. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J Neural Eng. 2015;12:026002.
Article
PubMed
PubMed Central
Google Scholar
Wagner S, Bauer S. Materials for stretchable electronics. MRS Bull. 2012;37:207–13.
Article
Google Scholar
Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol. 2002;20:602–6.
Article
PubMed
CAS
Google Scholar
Wang Y, Kim YM, Langer R. In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A. 2003;66A:192–7.
Article
CAS
Google Scholar
Wang Y, Xiao J. Programmable, reversible and repeatable wrinkling of shape memory polymer thin films on elastomeric substrates for smart adhesion. Soft Matter. 2017;13:5317–23.
Article
PubMed
CAS
Google Scholar
Wang Z, et al. Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. J Mater Chem C. 2017;5:8714–22.
Article
CAS
Google Scholar
Wark HAC, et al. A new high-density penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng. 2013;10:045003.
Article
PubMed
CAS
Google Scholar
Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng. 2002;49:1574–9.
Article
PubMed
Google Scholar
Wu H, Kustra S, Gates EM, Bettinger CJ. Topographic substrates as strain relief features in stretchable organic thin film transistors. Org Electron. 2013;14:1636–42.
Article
CAS
Google Scholar
Wu H, et al. Transfer printing of metallic microstructures on adhesion-promoting hydrogel substrates. Adv Mater. 2015;27:3398–404.
Article
PubMed
CAS
Google Scholar
Wu H, et al. Composition-dependent underwater adhesion of catechol-bearing hydrogels. Polym Int. 2016;65:1355–9.
Article
CAS
Google Scholar
Wu S. Calculation of interfacial tension in polymer systems. J Polym Sci Part C Polym Symp. 1971;34:19–30.
Article
Google Scholar
Xie X, Rieth L, Merugu S, Tathireddy P, Solzbacher F. Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics. Appl Phys Lett. 2012;101:093702.
Article
PubMed Central
CAS
Google Scholar
Xie X, et al. Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation. J Neural Eng. 2014a;11:026016.
Article
PubMed
PubMed Central
Google Scholar
Xie X, et al. Long-term reliability of Al 2 O 3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation. J Neural Eng. 2014b;11:026016.
Article
PubMed
PubMed Central
Google Scholar
Xu L, Shyu TC, Kotov NA. Origami and Kirigami Nanocomposites. ACS Nano. 2017;11:7587–99.
Article
PubMed
CAS
Google Scholar
Yang J, Webb AR, Ameer GA. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater. 2004;16:511–6.
Article
CAS
Google Scholar
Zhang Y, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter. 2013;9:8062.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ziegler D, Suzuki T, Takeuchi S. Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of Parylene. J Microelectromech Syst. 2006;15:1477–82.
Article
CAS
Google Scholar