Aronson R, Rastogi R, Mdingi C, Chen X, Tweden K. First assessment of the performance of an implantable CGM system through 180 days in a primarily adolescent population with type 1 diabetes. Diabetes. 2018;67(Supplement 1):13–OR.
Article
Google Scholar
Bernard C. Leçons de physiologie expérimentale appliquée à la médecine: faites au Collège de France. Paris: J B Baillière et fils; 1855. p. 1046.
Berthoud H-R. The vagus nerve, food intake and obesity. Regul Pept. 2008;149(1–3):15–25.
Article
CAS
Google Scholar
Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808284/. Cited 2018 Oct 17.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.
Article
CAS
Google Scholar
Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care. 2003;26(6):1902–12.
Article
CAS
Google Scholar
Derbenev AV, Zsombok A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin Immunopathol. 2016;38(3):397–406.
Article
CAS
Google Scholar
Fournel A, Marlin A, Abot A, Pasquio C, Cirillo C, Cani PD, et al. Glucosensing in the gastrointestinal tract: impact on glucose metabolism. Am J Physiol Gastrointest Liver Physiol. 2016;310(9):G645–58.
Article
Google Scholar
Gram DX, Holst JJ, Szallasi A. TRPV1: a potential therapeutic target in type 2 diabetes and comorbidities? Trends Mol Med. 2017;23(11):1002–13.
Article
CAS
Google Scholar
Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, et al. A neural circuit for gut-induced reward. Cell. 2018. Available from: http://www.sciencedirect.com/science/article/pii/S0092867418311103. Cited 2018 Oct 17
Hu J, Song Z-Y, Zhang H-H, Qin X, Hu S, Jiang X, et al. Colonic hypersensitivity and sensitization of voltage-gated sodium channels in primary sensory neurons in rats with diabetes. J Neurogastroenterol Motil. 2016;22(1):129–40.
Article
Google Scholar
Inoue H. Central insulin-mediated regulation of hepatic glucose production [Review]. Endocr J. 2015;63(1):1–7.
Article
CAS
Google Scholar
Jordan SD, Könner AC, Brüning JC. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci. 2010;67(19):3255–73.
Article
CAS
Google Scholar
Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236.
Article
Google Scholar
Klonoff DC. The benefits of implanted glucose sensors. J Diabetes Sci Technol. 2007;1(6):797–800.
Article
Google Scholar
Koyama Y, Coker RH, Stone EE, Lacy DB, Jabbour K, Williams PE, et al. Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes. 2000;49(9):1434–42.
Article
CAS
Google Scholar
Lee J, Cummings BP, Martin E, Sharp JW, Graham JL, Stanhope KL, et al. Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2012;302(6):R657–66.
Article
CAS
Google Scholar
Lee KC, Miller RE. The hepatic vagus nerve and the neural regulation of insulin secretion. Endocrinology. 1985;117(1):307–14.
Article
CAS
Google Scholar
Limberg JK, Curry TB, Prabhakar NR, Joyner MJ. Is insulin the new intermittent hypoxia? Med Hypotheses. 2014;82(6):730–5.
Article
CAS
Google Scholar
Marks V. Spontaneous hypoglycaemia. Br Med J. 1972;1(5797):430–2.
Article
CAS
Google Scholar
Masi EB, Valdés-Ferrer SI, Steinberg BE. The vagus neurometabolic interface and clinical disease. Int J Obes. 2018;42(6):1101–11.
Article
Google Scholar
McCrimmon R. The mechanisms that underlie glucose sensing during hypoglycaemia in diabetes. Diabet Med. 2008;25(5):513–22.
Article
CAS
Google Scholar
Muroi Y, Ru F, Kollarik M, Canning BJ, Hughes SA, Walsh S, et al. Selective silencing of NaV1.7 decreases excitability and conduction in vagal sensory neurons. J Physiol. 2011;589(Pt 23:5663–76.
Article
CAS
Google Scholar
Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol. 2008;586(6):1595–604.
Article
CAS
Google Scholar
Niijima A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the Guinea-pig. J Physiol. 1982;332:315–23.
Article
CAS
Google Scholar
Niijima A. The effect of D-glucose on the firing rate of glucose-sensitive vagal afferents in the liver in comparison with the effect of 2-deoxy-D-glucose. J Auton Nerv Syst. 1984;10(3–4):255–60.
Article
CAS
Google Scholar
Niijima A. Neural mechanisms in the control of blood glucose concentration. J Nutr. 1989;119(6):833–40.
Article
CAS
Google Scholar
Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376–82.
Article
CAS
Google Scholar
Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005;1(1):53–61.
Article
CAS
Google Scholar
Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC, Conde SV. Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes. 2013;62(8):2905–16.
Article
CAS
Google Scholar
Routh VH. Glucose-sensing neurons: are they physiologically relevant? Physiol Behav. 2002;76(3):403–13.
Article
CAS
Google Scholar
Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981;30(3):219–25.
Article
CAS
Google Scholar
Saberi M, Bohland M, Donovan CM. The locus for hypoglycemic detection shifts with the rate of fall in Glycemia: the role of portal-superior mesenteric vein glucose sensing. Diabetes. 2008;57(5):1380–6.
Article
CAS
Google Scholar
Schwartz MW, Porte D. Diabetes, obesity, and the brain. Science. 2005;307(5708):375–9.
Article
CAS
Google Scholar
Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ, Myers MG, et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature. 2013;503(7474):59–66.
Article
CAS
Google Scholar
Silverman HA, Stiegler A, Tsaava T, Newman J, Steinberg BE, Masi EB, et al. Standardization of methods to record Vagus nerve activity in mice. Bioelectron Med. 2018;4:3.
Article
Google Scholar
Steinberg BE, Silverman HA, Robbiati S, Gunasekaran MK, Tsaava T, Battinelli E, et al. Cytokine-specific Neurograms in the sensory Vagus nerve. Bioelectron Med. 2016;3:7–17.
Article
Google Scholar
Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-Like Channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112(6):819–29.
Article
CAS
Google Scholar
Suri A, Szallasi A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol Sci. 2008;29(1):29–36.
Article
CAS
Google Scholar
Verberne AJM, Sabetghadam A, Korim WS. Neural pathways that control the glucose counterregulatory response. Front Neurosci. 2014;8:38.
Article
Google Scholar
Wehrwein EA, Basu R, Basu A, Curry TB, Rizza RA, Joyner MJ. Hyperoxia blunts counterregulation during hypoglycaemia in humans: possible role for the carotid bodies? J Physiol. 2010;588(Pt 22):4593–601.
Article
CAS
Google Scholar
Zanos TP. Recording and decoding of vagal neural signals related to changes in physiological parameters and biomarkers of disease. Cold Spring Harb Perspect Med. 2019:a034157. http://perspectivesinmedicine.cshlp.org/content/early/2019/01/21/cshperspect.a034157.long
Zanos TP, Mineault PJ, Monteon JA, Pack CC. Functional connectivity during surround suppression in macaque area V4. In: 2011 annual international conference of the IEEE engineering in medicine and biology society,EMBC; 2011. p. 3342–5.
Chapter
Google Scholar
Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci. 2018;115(21):E4843-E4852.
Article
CAS
Google Scholar
Zhou C, Teegala SB, Khan BA, Gonzalez C, Routh VH. Hypoglycemia: role of hypothalamic glucose-inhibited (GI) neurons in detection and correction. Front Physiol. 2018;9 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854653/. Cited 2019 Jan 15.